如圖,直三棱柱(側(cè)棱垂直于底面的棱柱),底面,棱,分別為的中點(diǎn).

(1)求>的值;
(2)求證: 

(1)>的值為;(2)證明過(guò)程詳見(jiàn)試題解析.

解析試題分析:(1)先以C為原點(diǎn)建立空間坐標(biāo)系,由已知易求出,進(jìn)而可求 >的值;
(2)由(1)所建立的空間坐標(biāo)系可寫出、、的坐標(biāo)表示,即可知,從而得證.
試題解析:以C為原點(diǎn),CA、CB、CC1所在的直線分別為軸、軸、軸,建立坐標(biāo)系
(1)依題意得,∴
  ,
>=              6分
(2) 依題意得 ∴ ,
,,
∴  ,
∴ ,      ∴ 
                               12分
考點(diǎn):空間坐標(biāo)系、線面垂直的判定方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知在四棱錐中,底面是矩形,平面,,,的中點(diǎn),是線段上的點(diǎn).

(1)當(dāng)的中點(diǎn)時(shí),求證:平面
(2)要使二面角的大小為,試確定點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在多面體ABCD-A1B1C1D1中,上、下兩個(gè)底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.

(1)求異面直線AB1與DD1所成角的余弦值;
(2)已知F是AD的中點(diǎn),求證:FB1⊥平面BCC1B1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,三棱柱中,△ABC是正三角形,,平面平面.

(1)證明:;
(2)證明:求二面角的余弦值;
(3)設(shè)點(diǎn)是平面內(nèi)的動(dòng)點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在多面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,BAAC,EDDGEFDG,且AC=1,ABEDEF=2,ADDG=4.
 
(1)求證:BE⊥平面DEFG;
(2)求證:BF∥平面ACGD;
(3)求二面角FBCA的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直三棱柱ABCA1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1ACCBAB.
 
(1)證明:BC1∥平面A1CD;
(2)求二面角DA1CE的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在矩形ABCD中,AB=2AD=2,OCD的中點(diǎn),沿AO將△AOD折起,使DB.

(1)求證:平面AOD⊥平面ABCO;
(2)求直線BC與平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,邊長(zhǎng)為2的正方形中,點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),將△、△分別沿、折起,使、兩點(diǎn)重合于點(diǎn),連接,

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知正四棱錐P-ABCD的所有棱長(zhǎng)都是2,底面正方形兩條對(duì)角線相交于O點(diǎn),M是側(cè)棱PC的中點(diǎn).

(1)求此正四棱錐的體積.
(2)求直線BM與側(cè)面PAB所成角θ的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案