(本題滿分14分)已知函數(shù)),將的圖象向右平移兩個(gè)單位,得到函數(shù)的圖象,函數(shù)與函數(shù)的圖象關(guān)于直線對(duì)稱.
(1)求函數(shù)的解析式;
(2)若方程上有且僅有一個(gè)實(shí)根,求的取值范圍;
(3)設(shè),已知對(duì)任意的恒成立,求的取值范圍.
解:(1), ……1分
設(shè)的圖像上一點(diǎn),點(diǎn)關(guān)于的對(duì)稱點(diǎn)為,……2分
由點(diǎn)的圖像上,所以,
于是 即.  ……4分
(2)設(shè),
,即上有且僅有一個(gè)實(shí)根 ……5分
設(shè),對(duì)稱軸
①  ……6分  或   ②  ……7分
由①得 ,即,  ……8分
由②得  無解
  ……9分
(3)
,化簡得,設(shè)  
對(duì)任意恒成立.  ……10分
解法一:設(shè),對(duì)稱軸
③ ……11分 或  ④   ……12分
由③得, 由④得,即
綜上,.  ……14分
解法二:注意到,分離參數(shù)得對(duì)任意恒成立  ……11分
設(shè),,即
  ……12分
可證上單調(diào)遞增 ……13分
   
      ……14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.設(shè)函數(shù)f(x)=-a+x+a,x∈(0,1],a∈R*.
(1)若f(x)在(0,1]上是增函數(shù),求a的取值范圍;
(2)求f(x)在(0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

無論值如何變化,函數(shù))恒過定點(diǎn)(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),且定義域?yàn)椋?,2).
(1)求關(guān)于x的方程+3在(0,2)上的解;
(2)若是定義域(0,2)上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)若關(guān)于x的方程在(0,2)上有兩個(gè)不同的解,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出以下四個(gè)結(jié)論:
(1)若關(guān)于的方程沒有實(shí)數(shù)根,則的取值范圍是
(2)曲線與直線有兩個(gè)交點(diǎn)時(shí),實(shí)數(shù)的取值范圍是 
(3)已知點(diǎn)與點(diǎn)在直線兩側(cè), 則3b-2a>1;
(4)若將函數(shù)的圖像向右平移個(gè)單位后變?yōu)榕己瘮?shù),則 的最小值是;其中正確的結(jié)論是:__________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在(-1,1)上的函數(shù),f(x)滿足:f(x)-f(y)=f();當(dāng)x∈(-1,0)時(shí),有f(x)>0.若p=f()+f(),Q=f(),R=f(0);則 P,Q,R的大小關(guān)系為
A.R>Q>PB.R>P>QC.P>R>QD.Q>P>R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)可以產(chǎn)生區(qū)間[0,1]上的均勻隨機(jī)數(shù),若, 且為點(diǎn)的坐標(biāo),則點(diǎn)滿足的概率是                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某廠家擬對(duì)一商品舉行促銷活動(dòng),當(dāng)該商品的售價(jià)為元時(shí),全年的促銷費(fèi)用為萬元;根據(jù)以往的銷售經(jīng)驗(yàn),實(shí)施促銷后的年銷售量萬件,其中4為常數(shù).當(dāng)該商品的售價(jià)為6元時(shí),年銷售量為49萬件.
(Ⅰ)求出的值;
(Ⅱ)若每件該商品的成本為4元時(shí),寫出廠家銷售該商品的年利潤萬元與售價(jià)元之間的關(guān)系;
(Ⅲ)當(dāng)該商品售價(jià)為多少元時(shí),使廠家銷售該商品所獲年利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù),,,則由表中數(shù)據(jù)確定、依次對(duì)應(yīng)       (    ).
A.、B.、、
C.、、D.、

查看答案和解析>>

同步練習(xí)冊答案