【題目】直線與雙曲線的漸近線交于兩點(diǎn),設(shè)為雙曲線上任一點(diǎn),若為坐標(biāo)原點(diǎn)),則下列不等式恒成立的是(  )

A. B. C. D.

【答案】C

【解析】由題意,雙曲線漸近線方程為,聯(lián)立直線,解得不妨設(shè), , 為雙曲線上的任意一點(diǎn), , , 時(shí)等號(hào)成立)可得,故選C.

方法點(diǎn)睛】本題主要考查雙曲線的的漸近線、向量相等的應(yīng)用以及平面向量的坐標(biāo)運(yùn)算、不等式的性質(zhì),屬于難題.向量的運(yùn)算有兩種方法,一是幾何運(yùn)算,往往結(jié)合平面幾何知識(shí)和三角函數(shù)知識(shí)解答,運(yùn)算法則是:(1)平行四邊形法則(平行四邊形的對(duì)角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和);二是坐標(biāo)運(yùn)算:建立坐標(biāo)系轉(zhuǎn)化為解析幾何問(wèn)題解答解答本題的關(guān)鍵是根據(jù)坐標(biāo)運(yùn)算

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知與曲線相切的直線,與軸, 軸交于兩點(diǎn), 為原點(diǎn), ,( .

1)求證: 相切的條件是: .

2)求線段中點(diǎn)的軌跡方程;

3)求三角形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求函數(shù)f(x)=x2+2xa-1在區(qū)間上的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)y=f(x)的解析式,并用“五點(diǎn)法作圖”在給出的直角坐標(biāo)系中畫(huà)出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象;

(2)設(shè)α∈(0,π),f( )= ,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】Sn為數(shù)列{an}的前n項(xiàng)和,已知an>0,an2+2an=4Sn+3
(I)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于f(x)=4sin (xR),有下列命題

①由f(x1)=f(x2)=0可得x1x2π的整數(shù)倍

yf(x)的表達(dá)式可改寫(xiě)成y=4cos;

yf(x)圖象關(guān)于對(duì)稱(chēng);

yf(x)圖象關(guān)于x=-對(duì)稱(chēng).

其中正確命題的序號(hào)為________(將你認(rèn)為正確的都填上)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在印度有一個(gè)古老的傳說(shuō):舍罕王打算獎(jiǎng)賞國(guó)際象棋的發(fā)明人——宰相宰相西薩班達(dá)依爾.國(guó)王問(wèn)他想要什么,他對(duì)國(guó)王說(shuō):“陛下,請(qǐng)您在這張棋盤(pán)的第1個(gè)小格里,賞給我1粒麥子,在第2個(gè)小格里給2粒,第3小格給4粒,以后每一小格都比前一小格加一倍.請(qǐng)您把這樣擺滿(mǎn)棋盤(pán)上所有的64格的麥粒,都賞給您的仆人吧!”國(guó)王覺(jué)得這要求太容易滿(mǎn)足了,就命令給他這些麥粒.當(dāng)人們把一袋一袋的麥子搬來(lái)開(kāi)始計(jì)數(shù)時(shí),國(guó)王才發(fā)現(xiàn):就是把全印度甚至全世界的麥粒全拿來(lái),也滿(mǎn)足不了那位宰相的要求.那么,宰相要求得到的麥粒到底有多少粒?下面是四位同學(xué)為了計(jì)算上面這個(gè)問(wèn)題而設(shè)計(jì)的程序框圖,其中正確的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,D、E是BC邊上兩點(diǎn),BD、BA、BC構(gòu)成以2為公比的等比數(shù)列,BD=6,∠AEB=2∠BAD,AE=9,則三角形ADE的面積為(
A.31.2
B.32.4
C.33.6
D.34.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,,為線段的中點(diǎn),為線段上一點(diǎn).

(1)求證:;

(2)求證:平面平面

(3)當(dāng)平面時(shí),求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案