【題目】已知函數(shù)f(x)是定義域為(0,+∞)的單調(diào)函數(shù),若對任意的x∈(0,+∞),都有f[f(x)﹣ ]=2,則f(2016)=(
A.
B.
C.
D.

【答案】C
【解析】∵f(x)是定義域為(0,+∞)的單調(diào)函數(shù),
∴存在唯一的正實數(shù)a,使得f(a)=2,
∵對任意的x∈(0,+∞),都有f[f(x)﹣ ]=2,
∴f(x)﹣ =a,即f(x)= +a,
∵f(a)=2,∴ +a=2,得a=1(舍負),
∴f(x)= +1,
∴f(2016)= +1=
故選C.
【考點精析】解答此題的關鍵在于理解奇偶性與單調(diào)性的綜合的相關知識,掌握奇函數(shù)在關于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關于原點對稱的區(qū)間上有相反的單調(diào)性.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了解今年某校高三畢業(yè)班準備報考飛行員學生的身體素質(zhì),學校對他們的體重進行了測量,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.

(1)求該校報考飛行員的總?cè)藬?shù);

(2)以這所學校的樣本數(shù)據(jù)來估計全省的總體數(shù)據(jù),若從全省報考飛行員的學生中(人數(shù)很多)任選2人,設表示體重超過60公斤的學生人數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)有且只有一個零點,求實數(shù)的值;

(2)證明:當時, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設不等式組 表示的平面區(qū)域為D,在區(qū)域D內(nèi)隨機取一個點,則此點到坐標原點的距離小于1的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的個數(shù)有(
①函數(shù)f(x)=lg(2x﹣1)的值域為R;
②若( a>( b , 則a<b;
③已知f(x)= ,則f[f(0)]=1;
④已知f(1)<f(2)<f(3)<…<f(2016),則f(x)在[1,2016]上是增函數(shù).
A.0個
B.1個
C.2 個
D.3個Q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如表提供了甲產(chǎn)品的產(chǎn)量x(噸)與利潤y(萬元)的幾組對照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5


(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程 = x+
(2)計算相關指數(shù)R2的值,并判斷線性模型擬合的效果.
參考公式: = = ,R2=1﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】加工爆米花時,爆開且不糊的粒數(shù)占加工總粒數(shù)的百分比稱為“可食用率”,在特定條件下,可食用率p與加工時間t(單位:分鐘)滿足函數(shù)關系p=at2+bt+c(a,b,c是常數(shù)),如圖記錄了三次實驗的數(shù)據(jù),根據(jù)上述函數(shù)模型和實驗數(shù)據(jù),可以得到最佳加工時間為(

A.3.50分鐘
B.3.75分鐘
C.4.00分鐘
D.4.25分鐘

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|(x+3)(x﹣6)≥0},B={x| <0}.
(1)求A∩RB;
(2)已知E={x|2a<x<a+1}(a∈R),若EB,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖的程序框圖表示求式子1×3×7×15×31×63的值,則判斷框內(nèi)可以填的條件為(

A.i≤31?
B.i≤63?
C.i≥63?
D.i≤127?

查看答案和解析>>

同步練習冊答案