14.利用“長方體ABCD-A1B1C1D1中,四面體A1BC1D”的特點,求得四面體PMNR(其中PM=NR=$\sqrt{10}$,PN=MR=$\sqrt{13}$,MN=PR=$\sqrt{5}$)的外接球的表面積為(  )
A.14πB.16πC.13πD.15π

分析 構(gòu)造長方體,使得面上的對角線長分別為$\sqrt{10}$,$\sqrt{13}$,$\sqrt{5}$,則長方體的對角線長等于四面體PMNR外接球的直徑,即可求出四面體PMNR外接球的表面積.

解答 解:由題意,構(gòu)造長方體,使得面上的對角線長分別為$\sqrt{10}$,$\sqrt{13}$,$\sqrt{5}$,
則長方體的對角線長等于四面體PMNR外接球的直徑.
設(shè)長方體的棱長分別為x,y,z,則x2+y2=10,y2+z2=13,x2+z2=5,
∴x2+y2+z2=14
∴三棱錐O-ABC外接球的直徑為$\sqrt{14}$,
∴三棱錐S-ABC外接球的表面積為π•14=14π,
故選A.

點評 本題考查球內(nèi)接多面體,構(gòu)造長方體,利用長方體的對角線長等于四面體外接球的直徑是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

4.已知奇函數(shù)f(x)滿足:(1)定義域為R;(2)f(x)>-2;(3)在(0,+∞)上單調(diào)遞減;(4)對于任意的d∈(-2,0),總存在x0,使f(x0)<d.請寫出一個這樣的函數(shù)解析式:f(x)=-2($\frac{{2}^{x}-1}{{2}^{x}+1}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.設(shè)函數(shù)f(x)=x-2,若不等式|f(x+3)|>|f(x)|+m對任意實數(shù)x恒成立,則m的取值范圍是(-∞,-3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設(shè)等比數(shù)列{an}的前n項和為Sn,若S5、S4、S6成等差數(shù)列,則數(shù)列{an}的公比q的值等于-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},則A∩∁UB( 。
A.{1,2,5,6}B.{1}C.{2}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,在平行四邊形OABC中,過點C(1,3)做CD⊥AB,垂足為點D,試求CD所在直線的一般式方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在幾何體ABCDE中,∠BAC=90°,DC⊥平面ABC,EB⊥平 面ABC,F(xiàn)是BC的中點,AB=AC
(1)求證:DC∥平面ABE;
(2)求證:AF⊥平面BCDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.△ABC的三個內(nèi)角A、B、C的對邊分別是a、b、c,如果a2=b(b+c).那么A-2B=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某商店每雙皮鞋的進貨價為80元,根據(jù)以往經(jīng)驗,以每雙90元銷售時,每月能賣出400雙,而每加價1元或減價1元銷售時,每月銷量會減少或增加20雙,為了每月獲取最大利潤,商店應(yīng)如何定價?每月的最大利潤為多少?

查看答案和解析>>

同步練習冊答案