16.某公司租賃甲、乙兩種設(shè)備生產(chǎn)A,B兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)A類產(chǎn)品5件和B類產(chǎn)品10件,乙種設(shè)備每天能生產(chǎn)A類產(chǎn)品6件和B類產(chǎn)品20件.已知設(shè)備甲每天的租賃費(fèi)為2000元,設(shè)備乙每天的租賃費(fèi)為3000元,現(xiàn)該公司至少要生產(chǎn)A類產(chǎn)品50件,B類產(chǎn)品140件,所需租賃費(fèi)最少為23000元.

分析 設(shè)需租賃甲種設(shè)備x天,乙種設(shè)備y天,可得$\left\{\begin{array}{l}{5x+6y≥50}\\{10x+20y≥140}\\{x,y∈{N}^{*}}\end{array}\right.$,畫出可行域,作出目標(biāo)函數(shù)為z=2000x+3000y.

解答 解:設(shè)需租賃甲種設(shè)備x天,乙種設(shè)備y天,
則$\left\{\begin{array}{l}{5x+6y≥50}\\{10x+20y≥140}\\{x,y∈{N}^{*}}\end{array}\right.$
目標(biāo)函數(shù)為z=2000x+3000y.
作出其可行域,易知當(dāng)x=4,y=5時(shí),
z=2000x+3000y有最小值23000元.
故答案為:23000.

點(diǎn)評(píng) 本題考查了線性規(guī)劃有關(guān)知識(shí)、直線方程與不等式的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若a+c=8,cosB=$\frac{1}{4}$.
(1)若$\overrightarrow{BA}•\overrightarrow{BC}$=4,求b的值;
(2)若sinA=$\frac{{\sqrt{6}}}{4}$,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率e=$\frac{1}{2}$,右焦點(diǎn)到右頂點(diǎn)的距離為1.
(1)求橢圓C的方程;
(2)A,B兩點(diǎn)為橢圓C的左右頂點(diǎn),P為橢圓上異于A,B的一點(diǎn),記直線PA,PB斜率分別為KPA,KPB,求KPA•KPB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知x,y滿足不等式組$\left\{\begin{array}{l}y≤x+1\\ y≥0\\ x≤1\end{array}\right.$,則z=2x-y的最大值為( 。
A.-2B.0C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)m∈R,復(fù)數(shù)z1=$\frac{{m}^{2}+m}{m+2}$+(m-15)i,z2=-2+m(m-3)i,若z1+z2是虛數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若2an+(-1)n•an=2n+(-1)n•2n(n∈N*),則S10=$\frac{2728}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知正實(shí)數(shù)x,y滿足2x+y=2,則$\frac{2}{x}$+$\frac{1}{y}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}為等差數(shù)列,其中a2+a3=8,a5=3a2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$,設(shè){bn}的前n項(xiàng)和為Sn.求最小的正整數(shù)n,使得${S_n}>\frac{2016}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.小趙、小錢、小孫、小李到 4 個(gè)景點(diǎn)旅游,每人只去一個(gè)景點(diǎn),設(shè)事件 A=“4 個(gè)人去的景點(diǎn)不相同”,事件B=“小趙獨(dú)自去一個(gè)景點(diǎn)”,則P( A|B)=( 。
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{5}{9}$

查看答案和解析>>

同步練習(xí)冊(cè)答案