(本小題滿分12分)
如圖,為圓的直徑,點、在圓上,,矩形所在平面和圓所在的平面互相垂直.
(Ⅰ)求證:AD∥平面BCF;
(Ⅱ)求證:平面平面;
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖PA⊥平面ABCD,四邊形ABCD是矩形,E、F分別是AB,PD的中點.
(1)求證:AF//平面PCE;
(2)若PA=AD且AD=2,CD=3,求P—CE—A的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,直三棱柱中,AC=BC=1, AAi="3"  DCCi上的點二面角A-A1B-D的余弦值為
(I )求證:CD=2;
(II)求點A到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
如圖,已知直角梯形的上底,,,平面平面是邊長為的等邊三角形。
(1)證明:
(2)求二面角的大小。
(3)求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,已知四棱錐PABCD的底面是菱形,∠BCD=60°,點EBC邊的中點,ACDE交于點O,PO⊥平面ABCD.
(Ⅰ)求證:PDBC;
(Ⅱ)若AB=6,PC=6,求二面角PADC的大。
(Ⅲ)在(Ⅱ)的條件下,求異面直線PBDE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

三棱錐S—ABC中,SA⊥底面ABC,SA=4,AB=3,DAB的中點∠ABC=90°,則
點D到面SBC的距離等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本題滿分12分)
如圖所示,⊥矩形所在的平面,分別是、的中點,

(1)求證:∥平面
(2)求證:;
(3)若,求證:平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
四棱錐中,側(cè)棱,底面是直角梯形,,且,的中點
(I)求異面直線所成的角;
(II)線段上是否存在一點,使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知兩條不同直線、,兩個不同平面、,給出下列命題:
①若垂直于內(nèi)的兩條相交直線,則;
②若,則平行于內(nèi)的所有直線;
③若,,則
④若,,則;
⑤若,,則
其中正確命題的序號是          .(把你認為正確命題的序號都填上)

查看答案和解析>>

同步練習冊答案