1.某學(xué)校隨機(jī)抽取部分學(xué)生調(diào)查其上學(xué)路上所需時間(單位:分鐘),并將所得數(shù)據(jù)制成頻率分布直方圖(如圖),若上學(xué)路上所需時間的范圍為[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方圖中a的值;
(2))如果上學(xué)路上所需時間不少于40分鐘的學(xué)生可申請在學(xué)校住宿,若招收學(xué)生1200人,請估計所招學(xué)生中有多少人可以申請住宿;
(3)求該校學(xué)生上學(xué)路上所需的平均時間.

分析 (1)由頻率分布直方圖中小矩形面積之和為1,能求出a的值.
(2)由頻率分布直方圖能估計所招學(xué)生中有可以申請住宿人數(shù).
(3)由頻率分布直方圖能求出該校學(xué)生上學(xué)路上所需的平均時間.

解答 解:(1)由a×20+0.025×20+0.0055×20+0.003×2×20=1,
解得a=0.0135.…(4分)
(2)∵上學(xué)路上所需時間不少于40分鐘的學(xué)生可申請在學(xué)校住宿,招收學(xué)生1200人,
∴估計所招學(xué)生中有可以申請住宿人數(shù)為:
(0.0055+0.003×2)×20×1200=276.…(8分)
(3)該校學(xué)生上學(xué)路上所需的平均時間為:
10×0.0135×20+30×0.025×20+50×0.0055×20+70×0.003×20+90×0.003×20=32.8.…(12分)

點評 本題考查實數(shù)值的求法,考查頻數(shù)和平均數(shù)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意頻率分布直方圖的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖所示,正方體ABCD-A1B1C1D1的棱長為2,線段B1D1上有兩個動點E,F(xiàn)且EF=$\frac{1}{2}$,則下列結(jié)論中正確的有(2)(3).
(1)AC⊥AE;
(2)EF∥平面ABCD;
(3)三棱錐A-BEF的體積為定值:
(4)異面直線AE,BF所成的角為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊,若A=60°,c=6,a=6,則此三角形有( 。
A.兩解B.一解C.無解D.無窮多解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知O為坐標(biāo)原點,雙曲線${x^2}-\frac{y^2}{b^2}=1({b>0})$上有一點P,過點P作兩條漸近線的平行線,與兩條漸近線的交點分別為A,B,若平行四邊形PAOB的面積為1,則雙曲線的離心率為( 。
A.$\sqrt{17}$B.$\sqrt{15}$C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知等差數(shù)列{an}中,${a_5}=\frac{π}{2}$若函數(shù)f(x)=sin2x-cosx-1,設(shè)cn=f(an),則數(shù)列{cn}的前9項和為( 。
A.0B.1C.9D.-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知a,b為實數(shù),且a≠b,a<0,則a<2b-$\frac{b^2}{a}$.(填“>”、“<”或“=”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,C為銳角且asinA=bsinBsinC,$b=\sqrt{2}a$.
(1)求C的大;
(2)求$\frac{c^2}{a^2}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.歐陽修在《賣油翁》中寫到:“(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢孔入,而錢不濕”,可見賣油翁的技藝之高超,若銅錢直徑2百米,中間有邊長為1百米的正方形小孔,隨機(jī)向銅錢上滴一滴油(油滴大小忽略不計),則油恰好落入孔中的概率是( 。
A.$\frac{1}{4π}$B.$\frac{1}{2π}$C.$\frac{1}{π}$D.$\frac{2}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.盒子中有大小形狀完全相同的4個紅球和3個白球,從中不放回的一次摸出兩個球,在第一次摸出的是紅球的前提下,第二次也摸出紅球的概率為( 。
A.$\frac{2}{7}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案