【題目】下列向量組中能作為表示它們所在平面內(nèi)所有向量的基底的是(
A. =(0,0), =(1,﹣2)
B. =(﹣1,2), =(2,﹣4)
C. =(3,5), =(6,10)
D. =(2,﹣3), =(6,9)

【答案】D
【解析】解:只要兩個向量不共線,即可作為基底,所以判斷哪兩個向量不共線即可: A. ,∴ 共線,不可作為基底,所以該選項錯誤;
B. ,∴ 共線,不可作為基底,所以該選項錯誤;
C. ,∴ 共線,不可作為基底,所以該選項錯誤;
D.可以判斷向量 不共線,所以可作為基底,所以該選項正確.
故選D.
【考點精析】解答此題的關(guān)鍵在于理解平面向量的基本定理及其意義的相關(guān)知識,掌握如果、是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量,有且只有一對實數(shù)、,使

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}是公差為d的等差數(shù)列. (Ⅰ)推導(dǎo){an}的前n項和Sn公式;
(Ⅱ)證明數(shù)列 是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足 =1,公差d∈(﹣1,0),當(dāng)且僅當(dāng)n=9時,數(shù)列{an}的前n項和Sn取得最大值,則該數(shù)列首項a1的取值范圍是(
A.( ,
B.[ , ]
C.( ,
D.[ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的頂點A(5,1),AB邊上的中線CM所在直線方程為2x﹣y﹣5=0,AC邊上的高BH所在直線方程為x﹣2y﹣5=0.求:
(1)頂點C的坐標(biāo);
(2)直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知c=2,C=
(1)若b= ,求角B;
(2)若sinC+sin(B﹣A)=2sin2A,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,A(1,3),BC邊所在的直線方程為y﹣1=0,AB邊上的中線所在的直線方程為x﹣3y+4=0. (Ⅰ)求B,C點的坐標(biāo);
(Ⅱ)求△ABC的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且
(1)求角A的值;
(2)若∠B= ,BC邊上中線AM= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:噸)對價格y(單位:千元/噸)和利潤z的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如表:

x

1

2

3

4

5

y

7.0

6.5

5.5

3.8

2.2

(Ⅰ)求y關(guān)于x的線性回歸方程 ;
(Ⅱ)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少時,年利潤z取到最大值?(保留兩位小數(shù))
參考公式: = =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的方程為(x﹣1)2+(y﹣2)2=4. (Ⅰ)求過點M(3,1)的圓C的切線方程;
(Ⅱ)判斷直線ax﹣y+3=0與圓C的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案