14.設(shè)f(x)是定義在(-∞,+∞)上的函數(shù),對(duì)一切x∈R均有f(x)+f(x+3)=0,且當(dāng)-1<x≤1時(shí),f(x)=2x-3.
(1)求f(x)的周期;
(2)求當(dāng)2<x≤4時(shí),f(x)的解析式.

分析 (1)利用已知條件,轉(zhuǎn)化為周期的定義,求解即可.
(2)利用已知條件,求出-1≤x≤1時(shí),f(x+3)=-2x+3,設(shè)x+3=t,轉(zhuǎn)化求解即可.

解答 解:(1)∵f(x)+f(x+3)=0,∴f(x+3)=-f(x)
所以f(x-3)+f(x)=0,
∴f(x-3)=-f(x),
∴f(x+3)=f(x-3),
∴f[(x-3)+6]=f(x-3),
所以周期為6.
(2)∵當(dāng)-1<x≤1時(shí),f(x)=2x-3,
∴當(dāng)-1≤x≤1時(shí)f(x+3)=-f(x)=-2x+3,
設(shè)x+3=t,則由-1<x≤1得2<t≤4,又x=t-3,
于是f(t)=-2(t-3)+3=-2t+9,
故當(dāng)2<x≤4時(shí),
f(x)=-2x+9.

點(diǎn)評(píng) 本題考查抽象函數(shù)的應(yīng)用,周期的求法,函數(shù)的解析式的求法,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)等差數(shù)列{an}的前n項(xiàng)和記為Sn,已知a10=30,a20=50,Sn=242,求n.
(2)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S10=10,S30=130,求S20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an},an>0,其前n項(xiàng)和Sn滿足Sn=2an-2n+1,其中n∈N*.
(1)設(shè)bn=$\frac{a_n}{2^n}$,證明:數(shù)列{bn}是等差數(shù)列;
(2)設(shè)cn=bn•2-n,Tn為數(shù)列{cn}的前n項(xiàng)和,求證:Tn<3;
(3)設(shè)dn=4n+(-1)n-1λ•2bn(λ為非零整數(shù),n∈N*),試確定λ的值,使得對(duì)任意n∈N*,都有dn+1>dn成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥0\\{x^2}+2{y^2}≤1\end{array}\right.$,則z=4x-y的最小值為$-\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若曲線y=1+$\sqrt{4-{x}^{2}}$與直線kx-y-2k+4=0有兩個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是$\frac{5}{12}$<k≤$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.命題p:有一個(gè)素?cái)?shù)含有三個(gè)正因數(shù),則¬p為每一個(gè)素?cái)?shù)都不含三個(gè)正因數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.國(guó)家為了鼓勵(lì)節(jié)約用水,實(shí)行階梯用水收費(fèi)制度,價(jià)格參照表如表:
用水量(噸)單價(jià)(元/噸)
0~20(含)2.5
20~35(含)3超過(guò)20噸不超過(guò)35噸的部分按3元/噸收費(fèi)
35以上4超過(guò)35噸的部分按4元/噸收費(fèi)
(Ⅰ)若小明家10月份用水量為30噸,則應(yīng)繳多少水費(fèi)?
(Ⅱ)若小明家10月份繳水費(fèi)99元,則小明家10月份用水多少噸?
(Ⅲ)寫出水費(fèi)y與用水量x之間的函數(shù)關(guān)系式,并畫出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-ax+4,x≤1}\\{-ax+3a-4,x>1}\end{array}\right.$在R上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是( 。
A.[0,2]B.[0,1]C.[0,+∞)D.[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.給出下列條件(其中l(wèi)為直線,α為平面):
①l垂直于α內(nèi)的一五邊形的兩條邊;
②l垂直于α內(nèi)三條不都平行的直線;
③l垂直于α內(nèi)無(wú)數(shù)條直線;
④α垂直于α內(nèi)正六邊形的三條邊.
其中l(wèi)⊥α的充分條件的所有序號(hào)是( 。
A.B.①③C.②④D.

查看答案和解析>>

同步練習(xí)冊(cè)答案