已知橢圓C的方程為,其兩個(gè)焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在橢圓C上,且.橢圓的離心率

(1)求橢圓C的方程

(2)過(guò)點(diǎn)M(2,1)的直線l交橢圓C于A,B兩點(diǎn),且A,B兩點(diǎn)關(guān)于點(diǎn)M對(duì)稱(chēng),求直線l的方程.

答案:
解析:

  解:(1)由題意,離心率

  ,所以橢圓C的方程為

  (2)設(shè)兩點(diǎn)坐標(biāo)為,由題意點(diǎn)是線段AB的中點(diǎn)

  ,又兩點(diǎn)在橢圓上

  兩式相減得

  

  ,所以

  直線l的方程為

  另解:設(shè)A點(diǎn)坐標(biāo)為(x,y),則B點(diǎn)坐標(biāo)為,又A,B兩點(diǎn)在橢圓上

  所以兩式相減并整理得

  從而兩點(diǎn)在直線上,但是經(jīng)過(guò)兩點(diǎn)的直線只有一條

  所以直線l的方程為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a≥2b>0)

(1)求橢圓C的離心率的取值范圍;
(2)若橢圓C與橢圓2x2+5y2=50有相同的焦點(diǎn),且過(guò)點(diǎn)M(4,1),求橢圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的方程為
x2
a2
y2
b2
=1
(a>b>0),稱(chēng)圓心在坐標(biāo)原點(diǎn)O,半徑為
a2+b2
的圓為橢圓C的“伴隨圓”,橢圓C的短軸長(zhǎng)為2,離心率為
6
3

(Ⅰ)求橢圓C及其“伴隨圓”的方程;
(Ⅱ)若直線l與橢圓C交于A,B兩點(diǎn),與其“伴隨圓”交于C,D兩點(diǎn),當(dāng)|CD|=
13
 時(shí),求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•泉州模擬)已知橢圓C的方程為:
x2
a2
+
y2
2
=1 (a>0)
,其焦點(diǎn)在x軸上,離心率e=
2
2

(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)點(diǎn)P(x0,y0)滿足
OP
=
OM
+2
ON
,其中M,N是橢圓C上的點(diǎn),直線OM與ON的斜率之積為-
1
2
,求證:x02+2
y
2
0
為定值.
(3)在(2)的條件下,問(wèn):是否存在兩個(gè)定點(diǎn)A,B,使得|PA|+|PB|為定值?若存在,給出證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•衡陽(yáng)模擬)已知橢圓C的方程為
y2
a2
+
x2
b2
=1(a>b>0),離心率e=
2
2
,上焦點(diǎn)到直線y=
a2
c
的距離為
2
2
,直線l與y軸交于一點(diǎn)P(0,m),與橢圓C交于相異兩點(diǎn)A,B且
AP
=t
PB

(1)求橢圓C的方程;
(2)若
OA
+t
OB
=4
OP
,求m的取值范圍•

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的方程為
x 2
4
+
y2
3
=1,過(guò)C的右焦點(diǎn)F的直線與C相交于A、B兩點(diǎn),向量
m
=(-1,-4),若向量
OA
-
OB
m
-
OF
共線,則直線AB的方程是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案