15.兩直線3x-4y-5=0與3x-4y+5=0的距離為( 。
A.0B.$\frac{5}{3}$C.1D.2

分析 直接利用平行線之間的距離公式求解即可.

解答 解:兩平行直線3x-4y-5=0與3x-4y+5=0的距離是:$\frac{|5+5|}{\sqrt{9+16}}$=2
故選:D.

點評 本題考查平行線之間的距離公式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知a∈R,復(fù)數(shù)z=(1-a)+2ai對應(yīng)的點在同一條直線l上,則直線l的方程為y=-2x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若不等式x2-ax+a>0在(1,+∞)上恒成立,則實數(shù)a的取值范圍是( 。
A.[0,4]B.[4,+∞)C.(-∞,4)D.(-∞,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)定義在區(qū)間(-b,b)上的非常函數(shù)f(x)=lg$\frac{1+ax}{1-2x}$是奇函數(shù),則ab的范圍是( 。
A.($\frac{\sqrt{2}}{2}$,$\sqrt{2}$]B.(1,$\sqrt{2}$]C.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]D.[1,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個相等的實根,且f′(x)=2x+2.
(1)求y=f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積;
(2)若直線x=-t(0<t<1)把y=f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積二等分,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.統(tǒng)計某小區(qū)100戶人家1月份用水量,制成條形統(tǒng)計圖如圖,則1月份用水量的平均數(shù)為6.16t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)全集U={0,1,2,3},集合M={1,3},則M的補集∁UM為( 。
A.{0}B.{2}C.{0,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.一個化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲、乙兩種肥料所需要的主要原料磷酸鹽、硝酸鹽如表,已知現(xiàn)庫存磷酸鹽10t、硝酸鹽66t,在此基礎(chǔ)上生產(chǎn)這兩種混合肥料,設(shè)x,y分別為計劃生產(chǎn)甲、乙兩種混合肥料的車皮數(shù).
 磷酸鹽(t)硝酸鹽(t)
生產(chǎn)1車皮甲種肥料418
生產(chǎn)1車皮乙種肥料115
(1)列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)若生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為1萬元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤為0.5萬,那么分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大的利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列說法
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;
②設(shè)有一個回歸方程$\hat y=3-5x$,變量x增加一個單位時,y平均增加5個單位;
③線性回歸方程$\hat y=\hat bx+\hat a$必過點$(\overline x,\overline y)$;
④在一個2×2列聯(lián)表中,由計算得Χ2=13.079,則其兩個變量間有關(guān)系的可能性是小于90%.
獨立性檢驗臨界值表
P(Χ2≥k)0.050.0100.0050.001
K3.8416.6357.87910.828
其中錯誤的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案