【題目】在圓中有“圓心與弦(非直徑)的中點(diǎn)的連線垂直于弦所在的直線”.比上述性質(zhì),相應(yīng)地:在球中有

【答案】球心與截面圓(不經(jīng)過(guò)球心的截面圓)圓心的連線垂直于截面圓所在的平面
【解析】解:由類(lèi)比推理的法則,可知,圓心對(duì)應(yīng)球心,弦對(duì)應(yīng)截面圓,弦的中點(diǎn)對(duì)應(yīng)圓心, 所以在圓中有“圓心與弦(非直徑)的中點(diǎn)的連線垂直于弦所在的直線”.
比上述性質(zhì),相應(yīng)地:在球中有:球心與截面圓(不經(jīng)過(guò)球心的截面圓)圓心的連線垂直于截面圓所在的平面.
所以答案是:球心與截面圓(不經(jīng)過(guò)球心的截面圓)圓心的連線垂直于截面圓所在的平面.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解類(lèi)比推理的相關(guān)知識(shí),掌握根據(jù)兩類(lèi)不同事物之間具有某些類(lèi)似(或一致)性,推測(cè)其中一類(lèi)事物具有與另外一類(lèi)事物類(lèi)似的性質(zhì)的推理,叫做類(lèi)比推理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠在甲、乙兩地的兩個(gè)分廠各生產(chǎn)某種機(jī)器12臺(tái)和6臺(tái),現(xiàn)銷(xiāo)售給A地10臺(tái),B地8臺(tái),已知從甲地調(diào)運(yùn)1臺(tái)至A地、B地的運(yùn)費(fèi)分別為400元和800元,從乙地調(diào)運(yùn)1臺(tái)至A地、B地的費(fèi)用分別為300元和500元.
(1)設(shè)從甲地調(diào)運(yùn)x臺(tái)至A地,求總費(fèi)用y關(guān)于臺(tái)數(shù)x的函數(shù)解析式;
(2)若總運(yùn)費(fèi)不超過(guò)9000元,問(wèn)共有幾種調(diào)運(yùn)方案;
(3)求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案及最低的費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=5loga(3x﹣8)+1(a>0,且a≠1),則f(x)過(guò)定點(diǎn)(
A.(1,3)
B.(1,1)
C.(5,1)
D.(3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=x2sinx的導(dǎo)數(shù)為(
A.y′=x2cosx﹣2xsinx
B.y′=2xsinx+x2cosx
C.y′=2xsinx﹣x2cosx
D.y′=xcosx﹣x2sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)幾何體的三視圖形狀都相同、大小均相等,那么這個(gè)幾何體不可以是( )
A.球
B.三棱錐
C.正方體
D.圓柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于斜二側(cè)畫(huà)法,下列說(shuō)法正確的是(  )
A.三角形的直觀圖可能是一條線段
B.平行四邊形的直觀圖一定是平行四邊形
C.正方形的直觀圖是正方形
D.菱形的直觀圖是菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若(mx+y)6展開(kāi)式中x3y3的系數(shù)為﹣160,則m=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在(1+x)6(1+y)4的展開(kāi)式中,記xmyn項(xiàng)的系數(shù)為f(m,n),求f(3,0)+f(2,1)+f(1,2)+f(0,3)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:m<0,命題q:x∈R,x2+mx+1>0成立,若“p∧q”為真命題,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案