【題目】《周髀算經(jīng)》有這樣一個(gè)問(wèn)題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個(gè)節(jié)氣日影長(zhǎng)減等寸,雨水、驚蟄、春分、清明日影之和為三丈二尺,前七個(gè)節(jié)氣日影之和為七丈三尺五寸,問(wèn)立夏日影長(zhǎng)為(

A.七尺五寸B.六尺五寸C.五尺五寸D.四尺五寸

【答案】D

【解析】

利用等差數(shù)列的通項(xiàng)公式以及求和公式列出方程組,求出首項(xiàng)和公差,由此可求得立夏日影長(zhǎng).

從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個(gè)節(jié)氣日影長(zhǎng)減等寸,雨水、驚蟄、春分、清明日影之和為三丈二尺,前七個(gè)節(jié)氣日影之和為七丈三尺五寸,

設(shè)十二節(jié)氣第個(gè)節(jié)氣的日影長(zhǎng)為,則數(shù)列為等差數(shù)列,設(shè)其公差為,前項(xiàng)和為,

,解得

,因此,立夏日影長(zhǎng)為四尺五寸.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車(chē)又稱為小黃車(chē),近年來(lái)逐漸走進(jìn)了人們的生活,也成為減少空氣污染,緩解城市交通壓力的一種重要手段.為調(diào)查某地區(qū)居民對(duì)共享單車(chē)的使用情況,從該地區(qū)居民中按年齡用隨機(jī)抽樣的方式隨機(jī)抽取了人進(jìn)行問(wèn)卷調(diào)查,得到這人對(duì)共享單車(chē)的評(píng)價(jià)得分統(tǒng)計(jì)填入莖葉圖,如下所示(滿分分):

1)找出居民問(wèn)卷得分的眾數(shù)和中位數(shù);

2)請(qǐng)計(jì)算這位居民問(wèn)卷的平均得分;

3)若在成績(jī)?yōu)?/span>分的居民中隨機(jī)抽取人,求恰有人成績(jī)超過(guò)分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求曲線處的切線方程,并證明:.

2)當(dāng)時(shí),方程有兩個(gè)不同的實(shí)數(shù)根,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:

是偶函數(shù);的最大值為;

個(gè)零點(diǎn);在區(qū)間單調(diào)遞增.

其中所有正確結(jié)論的編號(hào)是(

A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的焦點(diǎn)為,是拋物線的準(zhǔn)線與軸的交點(diǎn),直線經(jīng)過(guò)焦點(diǎn)且與拋物線相交于、兩點(diǎn),直線分別交軸于、兩點(diǎn),記、的面積分別為、.

1)求證:;

2)若恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校擬從甲、乙兩名同學(xué)中選一人參加疫情知識(shí)問(wèn)答競(jìng)賽,于是抽取了甲、乙兩人最近同時(shí)參加校內(nèi)競(jìng)賽的十次成績(jī),將統(tǒng)計(jì)情況繪制成如圖所示的折線圖.根據(jù)該折線圖,下面結(jié)論正確的是(

A.甲、乙成績(jī)的中位數(shù)均為7

B.乙的成績(jī)的平均分為6.8

C.甲從第四次到第六次成績(jī)的下降速率要大于乙從第四次到第五次的下降速率

D.甲的成績(jī)的方差小于乙的成績(jī)的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,底面為直角梯形,分別為的中點(diǎn).

1)求證:平面;

2)若截面與底面所成銳二面角為,求的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)n個(gè)不同的實(shí)數(shù)a1,a2,an可得n!個(gè)不同的排列,每個(gè)排列為一行寫(xiě)成一個(gè)n!行的數(shù)陣.對(duì)第iai1,ai2,,ain,記bi=ai1+2ai23ai3+…+(1)nnain,i=1,2,3…,n.例如用1,2,3可得數(shù)陣如圖,對(duì)于此數(shù)陣中每一列各數(shù)之和都是12,所以bl+b2+…b6=12+2×123×12=24.那么,在用1,2,3,4,5形成的數(shù)陣中,b1+b2+…b120等于(

A.3600B.1800C.1080D.720

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于無(wú)窮數(shù)列的某一項(xiàng),若存在,有成立,則稱具有性質(zhì).

1)設(shè),若對(duì)任意的,都具有性質(zhì),求的最小值;

2)設(shè)等差數(shù)列的首項(xiàng),公差為,前項(xiàng)和為,若對(duì)任意的數(shù)列中的項(xiàng)都具有性質(zhì),求實(shí)數(shù)的取值范圍;

3)設(shè)數(shù)列的首項(xiàng),當(dāng)時(shí),存在滿足,且此數(shù)列中恰有一項(xiàng)不具有性質(zhì),求此數(shù)列的前項(xiàng)和的最大值和最小值以及取得最值時(shí)對(duì)應(yīng)的的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案