【題目】若函數(shù)在區(qū)間上恰好有一個(gè)零點(diǎn),則的最小值為______.
【答案】
【解析】
將函數(shù)在區(qū)間,上有一個(gè)零點(diǎn)等價(jià)于方程在區(qū)間,上恰有一個(gè)根,也即是函數(shù)和函數(shù)的圖象在區(qū)間上恰好有一個(gè)交點(diǎn),由二次函數(shù)得出函數(shù)的值域,令,再分當(dāng)時(shí),當(dāng)時(shí),兩種情況下兩函數(shù)圖象的交點(diǎn)情況得出的范圍,根據(jù)雙勾函數(shù)可求得的最小值.
依題意,函數(shù)在區(qū)間,上有一個(gè)零點(diǎn)等價(jià)于方程在區(qū)間,上恰有一個(gè)根,
函數(shù)和函數(shù)的圖象在區(qū)間上恰好有一個(gè)交點(diǎn),
函數(shù)關(guān)于對(duì)稱,在上有最小值,時(shí),,,
函數(shù),令,
當(dāng)時(shí),由復(fù)合函數(shù)單調(diào)性知單調(diào)遞減,當(dāng)時(shí),,
所以函數(shù)和函數(shù)的圖象在區(qū)間上無交點(diǎn),
當(dāng)時(shí),由復(fù)合函數(shù)單調(diào)性知單調(diào)遞增,如圖,
由圖可知,當(dāng),時(shí),函數(shù)圖象恰好有1個(gè)交點(diǎn),
此時(shí),解得,
因?yàn)?/span>在上單調(diào)遞增,所以,即的最小值為,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2022年北京冬奧運(yùn)動(dòng)會(huì)即第24屆冬季奧林匹克運(yùn)動(dòng)會(huì)將在2022年2月4日至2月20日在北京和張家口舉行,某研究機(jī)構(gòu)為了了解大學(xué)生對(duì)冰壺運(yùn)動(dòng)的興趣,隨機(jī)從某大學(xué)生中抽取了100人進(jìn)行調(diào)查,經(jīng)統(tǒng)計(jì)男生與女生的人數(shù)比為,男生中有20人表示對(duì)冰壺運(yùn)動(dòng)有興趣,女生中有15人對(duì)冰壺運(yùn)動(dòng)沒有興趣.
(1)完成列聯(lián)表,并判斷能否有把握認(rèn)為“對(duì)冰壺運(yùn)動(dòng)是否有興趣與性別有關(guān)”?
有興趣 | 沒有興趣 | 合計(jì) | |
男 | 20 | ||
女 | 15 | ||
合計(jì) | 100 |
(2)用分層抽樣的方法從樣本中對(duì)冰壺運(yùn)動(dòng)有興趣的學(xué)生中抽取6人,求抽取的男生和女生分別為多少人?若從這6人中選取兩人作為冰壺運(yùn)動(dòng)的宣傳員,求選取的2人中恰好有1位男生和1位女生的概率.
附:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面為邊長為的菱形,側(cè)面為矩形,其中且,平面,點(diǎn)為的中點(diǎn).
(1)證明:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某種新型病毒的傳染能力很強(qiáng),給人們生產(chǎn)和生活帶來很大的影響,所以創(chuàng)新研發(fā)疫苗成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場(chǎng)上這種新型冠狀病毒的疫苗的研發(fā)費(fèi)用(百萬元)和銷量(萬盒)的統(tǒng)計(jì)數(shù)據(jù)如下:
研發(fā)費(fèi)用(百萬元) | 2 | 3 | 6 | 10 | 13 | 14 |
銷量(萬盒) | 1 | 1 | 2 | 2.5 | 4 | 4.5 |
(1)根據(jù)上表中的數(shù)據(jù),建立關(guān)于的線性回歸方程(用分?jǐn)?shù)表示);
(2)根據(jù)所求的回歸方程,估計(jì)當(dāng)研發(fā)費(fèi)用為1600萬元時(shí),銷售量為多少?
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】遼寧省六校協(xié)作體(葫蘆島第一高中、東港二中、鳳城一中、北鎮(zhèn)高中、瓦房店高中、丹東四中)中的某校文科實(shí)驗(yàn)班的名學(xué)生期中考試的語文、數(shù)學(xué)成績都不低于分,其中語文成績的頻率分布直方圖如圖所示,成績分組區(qū)間是:、、、、.
(1)根據(jù)頻率分布直方圖,估計(jì)這名學(xué)生語文成績的中位數(shù)和平均數(shù);(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表;中位數(shù)精確到)
(2)若這名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示:
分組區(qū)間 | ||||
從數(shù)學(xué)成績?cè)?/span>的學(xué)生中隨機(jī)選取人,求選出的人中恰好有人數(shù)學(xué)成績?cè)?/span>的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為為上位于第一象限的任意一點(diǎn),過點(diǎn)的直線交于另一點(diǎn),交軸的正半軸于點(diǎn).
(1)若當(dāng)點(diǎn)的橫坐標(biāo)為,且為等腰三角形,求的方程;
(2)對(duì)于(1)中求出的拋物線,若點(diǎn),記點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為交軸于點(diǎn),且,求證:點(diǎn)的坐標(biāo)為,并求點(diǎn)到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險(xiǎn)公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險(xiǎn),現(xiàn)從名參保人員中隨機(jī)抽取名作為樣本進(jìn)行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應(yīng)交納的保費(fèi)如下表所示. 據(jù)統(tǒng)計(jì),該公司每年為這一萬名參保人員支出的各種費(fèi)用為一百萬元.
年齡 (單位:歲) | |||||
保費(fèi) (單位:元) |
(1)用樣本的頻率分布估計(jì)總體分布,為使公司不虧本,求精確到整數(shù)時(shí)的最小值;
(2)經(jīng)調(diào)查,年齡在之間老人每人中有人患該項(xiàng)疾病(以此頻率作為概率).該病的治療費(fèi)為元,如果參保,保險(xiǎn)公司補(bǔ)貼治療費(fèi)元.某老人年齡歲,若購買該項(xiàng)保險(xiǎn)(取中的).針對(duì)此疾病所支付的費(fèi)用為元;若沒有購買該項(xiàng)保險(xiǎn),針對(duì)此疾病所支付的費(fèi)用為元.試比較和的期望值大小,并判斷該老人購買此項(xiàng)保險(xiǎn)是否劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,左右焦點(diǎn)分別是和,以為圓心,3為半徑的圓與以為圓心,1為半徑的圓相交,且交點(diǎn)在橢圓C上.
(1)求橢圓C的方程.
(2)設(shè)橢圓,P為橢圓C上任意一點(diǎn),過點(diǎn)P的直線交橢圓E于A、B兩點(diǎn),射線OP交橢圓E于點(diǎn)Q.
①判斷是否為定值?若是定值求出該定值,若不是定值說明理由.
②求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線(為參數(shù)),直線 (為參數(shù), ),直線與曲線相切于點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程及點(diǎn)的極坐標(biāo);
(2)曲線的直角坐標(biāo)方程為,直線的極坐標(biāo)方程為,直線與曲線交于在,兩點(diǎn),記的面積為,的面積為,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com