一個多面體的直觀圖和三視圖如圖所示,其中、分別是的中點,上的一動點,主視圖與俯視圖都為正方形。

⑴求證:;
⑵當時,在棱上確定一點,使得∥平面,并給出證明。
⑶求二面角的平面角余弦值。

(1)利用線面垂直,,以及,進而證明線線垂直。
(2)

解析試題分析:① (4分)
②如圖所示,建立空間直角坐標系,

 ,有
 
設平面的法向量為

 令得到
  ∵ 得到 得到P點為A點   (8分)
③平面的法向量為,
設所求二面角為,則  12分)
考點:考查了線面的垂直,以及二面角。
點評:對于立體幾何中垂直的證明,一般要熟練的掌握線面垂直的判定定理和性質(zhì)定理來得到,同時能結合向量法表示出二面角,這是一般的求解二面角的方法之一,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,三棱柱的所有棱長都為2,中點,平面

(1)求證:平面;
(2)求二面角的余弦值;
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=600,AC=7,AD=6,S△ADC=,
求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
如圖,四邊形為矩形,平面,上的點,且平面.

(1)求證:;
(2)求三棱錐的體積;
(3)設在線段上,且滿足,試在線段上確定一點,使得平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.

(1) 求證:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求線段AC與AA1長度之比;
(3) 若D是棱CC1的中點,問在棱AB上是否存在一點E,使DE∥平面AB1C1?若存在,試確定點E的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,棱柱的側面是菱形,

(1)證明:平面平面;
(2)設上的點,且平面,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
在四棱錐中,//, ,平面,.

(Ⅰ)設平面平面,求證://;
(Ⅱ)求證:平面;
(Ⅲ)設點為線段上一點,且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,棱長為2的正方體中,E,F滿足

(Ⅰ)求證:EF//平面AB;
(Ⅱ)求證:EF;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,PA垂直于矩形ABCD所在的平面,,E、F分別是AB、PD的中點.

(Ⅰ)求證:平面PCE 平面PCD;
(Ⅱ)求三棱錐P-EFC的體積.

查看答案和解析>>

同步練習冊答案