13、已知函數(shù)f(x)=k•4x-k•2x+1-4(k+5)在區(qū)間[0,2]上存在零點,則實數(shù)k的取值范圍是
(-∞,-4]∪[5,+∞)
分析:要使函數(shù)f(x)=k•4x-k•2x+1-4(k+5)在區(qū)間[0,2]上存在零點,換元令t=2x,則t∈[1,4],即f(t)=k•t2-2k•t-4(k+5)=k(t-1)2-5(k+4)在[1,4]上有零點,根據(jù)零點判定定理即可求得結(jié)論.
解答:解:令t=2x,則t∈[1,4],
∴f(t)=k•t2-2k•t-4(k+5)=k(t-1)2-5(k+4)在[1,4]上有零點,
∴f(1)f(4)≤0即可,即-5(k+4)(4k-20)≤0,
解得k≥5或k≤-4,
故答案為:(-∞,-4]∪[5,+∞).
點評:此題是中檔題.考查函數(shù)的零點與函數(shù)圖象的交點之間的關(guān)系,體現(xiàn)了轉(zhuǎn)化的能力,同時考查了學(xué)生靈活應(yīng)用知識分析解決問題的能力和計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,設(shè)t=logax+logxa.
(Ⅰ)當(dāng)x∈(1,a)∪(a,+∞)時,將f(x)表示成t的函數(shù)h(t),并探究函數(shù)h(t)是否有極值;
(Ⅱ)當(dāng)k=4時,若對?x1∈(1,+∞),?x2∈[1,2],使f(x1)≤g(x2),試求實數(shù)b的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
k+1x
(k<0),求使得f(x+k)>1成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=k•a-x(k,a為常數(shù),a>0且a≠1)的圖象過點A(0,1),B(3,8).
(1)求實數(shù)k,a的值;
(2)若函數(shù)g(x)=
f(x)-1f(x)+1
,試判斷函數(shù)g(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蕪湖二模)給出以下五個命題:
①命題“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
②已知函數(shù)f(x)=k•cosx的圖象經(jīng)過點P(
π
3
,1),則函數(shù)圖象上過點P的切線斜率等于-
3

③a=1是直線y=ax+1和直線y=(a-2)x-1垂直的充要條件.
④函數(shù)f(x)=(
1
2
)x-x
1
3
在區(qū)間(0,1)上存在零點.
⑤已知向量
a
=(1,-2)
與向量
b
=(1,m)
的夾角為銳角,那么實數(shù)m的取值范圍是(-∞,
1
2

其中正確命題的序號是
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(已知函數(shù)f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,設(shè)t=logax+logxa.
(Ⅰ)當(dāng)x∈(1,a)∪(a,+∞)時,試將f(x)表示成t的函數(shù)h(t),并探究函數(shù)h(t)是否有極值;
(Ⅱ)當(dāng)k=4時,若對任意的x1∈(1,+∞),存在x2∈[1,2],使f(x1)≤g(x2),試求實數(shù)b的取值范圍..

查看答案和解析>>

同步練習(xí)冊答案