13.已知如圖底面ABC為直角三角形,∠C=90°,PA⊥平面ABC,求證:平面PBC⊥平面PAC.

分析 由PA⊥平面ABC得PA⊥BC,結(jié)合BC⊥AC得BC⊥平面PAC,于是平面PBC⊥平面PAC.

解答 證明:∵PA⊥平面ABC,BC?平面ABC,
∴PA⊥BC,
又BC⊥AC,PA?平面PAC,AC?平面PAC,PA∩AC=A,
∴BC⊥平面PAC,
∵BC?平面PBC,
∴平面PBC⊥平面PAC.

點評 本題考查了面面垂直的判定,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.命題“?x∈(0,+∞),x+$\frac{4}{x}$<4”的否定的真假是真.(填“真”或“假”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1(a>0),P($\frac{6\sqrt{2}}{5}$,-$\frac{8}{5}$)是橢圓E上的一點.
(1)求橢圓E的方程;
(2)若直線l與橢圓相交于B、C兩點,且滿足kOB•kOC=-$\frac{1}{2}$,O為坐標原點,求證:△OBC的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知復(fù)數(shù)z=$\frac{{a}^{2}-i}{i}$(a∈R,i為虛數(shù)單位),若z+a2是純虛數(shù),則a的值為(  )
A.±1B.1C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知數(shù)列{an}的通項公式為an=-2n2+21n,則該數(shù)列中的數(shù)值最大的項是( 。
A.第5項B.第6項C.第4項或第5項D.第5項或第6項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某單位共有36名員工,按年齡分為老年、中年、青年三組,其人數(shù)之比為3:2:1,現(xiàn)用分層抽樣的方法從總體中抽取一個容量為12的樣本,則青年組中甲、乙至少有一人被抽到的概率為( 。
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{25}{36}$D.$\frac{11}{36}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,一個邊長為2的正方形ABCD,E、F、G分別是AD、BC、CD的中點,直線AG∩EF=H,沿EF將其折疊,使得面ABFE⊥面CDEF,得到空間多邊形,連接AD、BC得三棱柱ADE-BCF,K為AG的中點.
(1)求證:直線HK∥平面BCF;
(2)求幾何體AB-CGHF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知{an}是遞增的等比數(shù)列,且a2+a3=-1,那么首項a1的取值范圍是$({-∞\;,\;-\frac{1}{2}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)隨機變量X服從[1,4]上的均勻分布,則P{2≤x≤3}=$\frac{1}{3}$.

查看答案和解析>>

同步練習冊答案