化簡
cos25°-sin2
sin40°cos40°
=( 。
A、1
B、2
C、
1
2
D、-1
考點:二倍角的余弦,三角函數(shù)中的恒等變換應(yīng)用
專題:三角函數(shù)的求值
分析:用倍角公式化簡后,再用誘導(dǎo)公式即可化簡求值.
解答: 解:
cos25°-sin2
sin40°cos40°
=
cos10°
1
2
sin80°
=
cos10°
1
2
cos10°
=2.
故選:B.
點評:本題主要考察了二倍角的余弦公式的應(yīng)用,三角函數(shù)中的恒等變換應(yīng)用,屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若sin(cosθ)cos(sinθ)<0,則θ的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足:①對于任意的x∈R,都有f(x+1)=
1
f(x)
;②函數(shù)y=f(x+1)是偶函數(shù);③當(dāng)x∈(0,1]時,f(x)=xex,則f(-
3
2
)
,f(
21
4
)
f(
22
3
)
從小到大的排列是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(0,1),(3+2
2
,0),(3-2
2
,0)在同圓C上.   
(1)求圓C方程             
(2)若圓C與直線x-y+a=0交于A,B兩點,且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.已知ac=b2-a2,A=
π
6
,則B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2-4x+my=0,求以P(1,1)為切點的圓的切線方程為( 。
A、x-2y-1=0
B、x-2y+1=0
C、2x+y-3=0
D、2x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的方程為:mx-y+2+m=0,圓O:x2+y2=8,直線l與圓O相交于A,B兩點
(1)不論m為何值時,求證:直線l恒過一定點,并求出該定點;
(2)是否存在實數(shù)m,使得直線l將圓O截得的兩段弧長的比為1:3,若存在,寫出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-2,1)
b
=(3,x)
,若
a
b
,則x=( 。
A、0
B、6
C、-
3
2
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正實數(shù)a,b滿足ab=32,則2a+b的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案