已知橢圓經(jīng)過(guò)點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等腰直角三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)動(dòng)直線交橢圓兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn).若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

【答案】

(1)(2)點(diǎn)就是所求的點(diǎn)

【解析】

試題分析:(Ⅰ)橢圓的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)連線構(gòu)成等腰直角三角形,所以,故橢圓的方程為

又因?yàn)闄E圓經(jīng)過(guò)點(diǎn),代入可得,2分

所以,故所求橢圓方程為.4分

(Ⅱ)當(dāng)直線的斜率為0時(shí),直線,直線交橢圓、兩點(diǎn),以為直徑的圓的方程為; 

當(dāng)直線的斜率不存在時(shí),直線,直線交橢圓兩點(diǎn),以為直徑的圓的方程為,

解得

即兩圓相切于點(diǎn),因此,所求的點(diǎn)如果存在,只能是.8分

事實(shí)上,點(diǎn)就是所求的點(diǎn).

證明如下:

當(dāng)的斜率不存在時(shí),以為直徑的圓過(guò)點(diǎn).9分

的斜率存在時(shí),可設(shè)直線,

消去

記點(diǎn)、,則    10分

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013061510050157111933/SYS201306151005388680530473_DA.files/image031.png">,

所以

所以,即以為直徑的圓恒過(guò)點(diǎn),12分

所以在坐標(biāo)平面上存在一個(gè)定點(diǎn)滿足條件.13分

考點(diǎn):直線與橢圓的位置關(guān)系

點(diǎn)評(píng):主要是考查了解析幾何中運(yùn)用代數(shù)的方法來(lái)建立方程組結(jié)合韋達(dá)定理來(lái)研究位置關(guān)系的運(yùn)用,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省洛陽(yáng)市高三下學(xué)期聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)已知橢圓經(jīng)過(guò)點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形.

(1)求橢圓的方程;

(2)動(dòng)直線交橢圓C于A、B兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過(guò)點(diǎn)T。若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省盧氏一高高三12月月考考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分12分)

已知橢圓經(jīng)過(guò)點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形.(1)求橢圓的方程;

(2)動(dòng)直線交橢圓C于A、B兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過(guò)點(diǎn)T。若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省福州市高三第五次質(zhì)量檢查數(shù)學(xué)理卷 題型:解答題

(本小題滿分13分)

已知橢圓經(jīng)過(guò)點(diǎn),且兩焦點(diǎn)與短軸一端點(diǎn)構(gòu)成等腰直角三角形。

(1)求橢圓的方程;

(2)動(dòng)直線交橢圓C于A、B兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過(guò)點(diǎn)T。若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓經(jīng)過(guò)點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形.

       (1)求橢圓的方程;

       (2)動(dòng)直線交橢圓C于A、B兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過(guò)點(diǎn)T。若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案