連接拋物線x2=4y的焦點(diǎn)F與點(diǎn)M(1,0)所得的線段與拋物線交于點(diǎn)A,設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),則三角形OAM的面積為( )
A.
B.
C.
D.
【答案】分析:先求出直線FM的方程,然后與拋物線方程聯(lián)立方程組解得點(diǎn)A的縱坐標(biāo),最后利用三角形面積公式求解.
解答:解:拋物線x2=4y的焦點(diǎn)F為(0,1)且M(1,0),
所以直線FM所在的直線方程為x+y=1,
與拋物線方程聯(lián)立有,
解得y1=,y2=,
因?yàn)辄c(diǎn)A是線段FM與拋物線x2=4y的交點(diǎn),所以點(diǎn)A的縱坐標(biāo)為,
所以
故選B.
點(diǎn)評(píng):本題主要考查代數(shù)法研究形,同時(shí)考查拋物線焦點(diǎn)坐標(biāo)、直線方程等知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

連接拋物線x2=4y的焦點(diǎn)F與點(diǎn)M(1,0)所得的線段與拋物線交于點(diǎn)A,設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),則三角形OAM的面積為( 。
A、-1+
2
B、
3
2
-
2
C、1+
2
D、
3
2
+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

連接拋物線x2=4y的焦點(diǎn)F與點(diǎn)M(1,0)所得的線段與拋物線交于點(diǎn)A,設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),則△OAM的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江西 題型:單選題

連接拋物線x2=4y的焦點(diǎn)F與點(diǎn)M(1,0)所得的線段與拋物線交于點(diǎn)A,設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),則三角形OAM的面積為( 。
A.-1+
2
B.
3
2
-
2
C.1+
2
D.
3
2
+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省泉州市南安一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

連接拋物線x2=4y的焦點(diǎn)F與點(diǎn)M(1,0)所得的線段與拋物線交于點(diǎn)A,設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),則三角形OAM的面積為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高考數(shù)學(xué)復(fù)習(xí):8.8 拋物線(解析版) 題型:解答題

連接拋物線x2=4y的焦點(diǎn)F與點(diǎn)M(1,0)所得的線段與拋物線交于點(diǎn)A,設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),則△OAM的面積為   

查看答案和解析>>

同步練習(xí)冊(cè)答案