已知函數(shù)(b、c、d為常數(shù)),當(dāng)時(shí),只有一個(gè)實(shí)根,當(dāng)時(shí),有3個(gè)相異實(shí)根,現(xiàn)給出下列4個(gè)命題:
①函數(shù)有2個(gè)極值點(diǎn);②函數(shù)有3個(gè)極值點(diǎn);③有一個(gè)相同的實(shí)根;④有一個(gè)相同的實(shí)根。
其中正確命題的個(gè)數(shù)是(   )
A.1B.2C.3D.4
C
首先由這樣的一個(gè)結(jié)論,對(duì)于函數(shù),當(dāng)時(shí),的單調(diào)性是,先增后減(可能不存在減)再增;當(dāng)時(shí),的單調(diào)性是,先減后增(可能不存在增)再減。

由“當(dāng)時(shí),只有一個(gè)實(shí)根,當(dāng)時(shí),有3個(gè)相異實(shí)根”結(jié)合上面的結(jié)論可知,當(dāng)單調(diào)遞增,在上單調(diào)遞減,極大值是,極小值是(其中是極大值點(diǎn)。是極小值點(diǎn))
作出函數(shù)的示意圖如下,
由此①③④對(duì),②錯(cuò),選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)給定函數(shù)
(1)試求函數(shù)的單調(diào)減區(qū)間;
(2)已知各項(xiàng)均為負(fù)的數(shù)列滿足,求證:;
(3)設(shè)為數(shù)列的前項(xiàng)和,求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖像在點(diǎn)處的切線的傾斜角為,問:在什么范圍取值時(shí),對(duì)于任意的,函數(shù)在區(qū)間上總存在極值?
(Ⅲ)當(dāng)時(shí),設(shè)函數(shù),若在區(qū)間上至少存在一個(gè)
使得成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若 恒成立,試確定實(shí)數(shù)的取值范圍;
(3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)若存在實(shí)數(shù),使得函數(shù)對(duì)其定義域上的任意實(shí)數(shù)分別滿足,則稱直線的“和諧直線”.已知為自然對(duì)數(shù)的底數(shù));
(1)求的極值;
(2)函數(shù)是否存在和諧直線?若存在,求出此和諧直線方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)設(shè)
(1)當(dāng)時(shí),求:函數(shù)的單調(diào)區(qū)間;
(2)若時(shí),求證:當(dāng)時(shí),不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)
(Ⅰ)若,處的切線相互垂直,求這兩個(gè)切線方程.
(Ⅱ)若單調(diào)遞增,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則        ▲          

查看答案和解析>>

同步練習(xí)冊(cè)答案