兩上圓的圓心分別為
問題轉(zhuǎn)化為點
C1,點
C2關(guān)于
l對稱,則
C1C2的中點(-1,1)必定在直線
l上,將
代入方程中,顯然有
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)曲線
C的方程是
y=
x3-
x,將
C沿
x軸、
y軸正向分別平移
t、
s單位長度后,得到曲線
C1.
(1)寫出曲線
C1的方程;
(2)證明:曲線
C與
C1關(guān)于點
A(
,
)對稱.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
橢圓
:
的離心率為
,長
軸端點與短軸端點間的距離為
。
(I)求橢圓
的方程;
(II)設(shè)過點
的直線
與橢圓
交于
兩點,
為坐標(biāo)原點,若
為直角三角形,求直線
的斜率。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
以點
為圓心、雙曲線
的漸近線為切線的圓的標(biāo)準(zhǔn)方程是
____ __.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知橢圓的中心在坐標(biāo)原點,焦點
F1,
F2在
x軸上,長軸
A1A2的長為4,左準(zhǔn)線
l與
x軸的交點為
M,|
MA1|∶|
A1F1|=2∶1.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線
l1:
x=
m(|
m|>1),
P為
l1上的動點,使∠
F1PF2最大的點
P記為
Q,求點
Q的坐標(biāo)(用
m表示).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,直線
:
與以原點為圓心、以橢圓
的短半軸長為半徑的圓相切.
(I)求橢圓
的方程;
(II)設(shè)橢圓
的左焦點為
,右焦點
,直線
過點
且垂直于橢圓的長軸,動直線
垂直
于點
,線段
垂直平分線交
于點
,求點
的軌跡
的方程;
(III)設(shè)
與
軸交于點
,不同的兩點
在
上,且滿足
求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
直線
經(jīng)過
兩點,那么直線
的傾斜角的取值范圍( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知直線l的方程為xcosa-ysina+m=0(
),則直線l的傾斜角為
。
查看答案和解析>>