如圖,在四棱錐中,⊥底面,四邊形是直角梯形,,,,.

(1)求證:平面⊥平面;
(2)求點C到平面的距離;
(3)求PC與平面PAD所成的角的正弦值。
(1)見解析;(2);(3)

試題分析:(1)平面,需證BC⊥平面PAB, 由⊥底面得PA⊥BC,又已知,
故問題得證;(2)利用等體積轉化法,;(3)根據(jù)線面角的定義,求出點C到平面PAD的距離、線段的長度,即可求出PC與平面PAD所成的角的正弦值。 
試題解析:(1)∵PA⊥平面ABCD, BC Ì平面ABCD,∴PA⊥BC,
又AB⊥BC,PA∩AB=A, ∴BC⊥平面PAB,
∵BC Ì平面PBC, ∴平面PBC⊥平面PAB 
(2), ∵
,
設點C到平面PBD的距離為,∵
,∴
由(2)知, ,又,∴
連接AC交BD于E,,
由相似形可得,點C到平面PAD的距離=,,
∴PC與平面PAD所成的角的正弦值是。      
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)(2011•天津)如圖,在四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=1,O為AC中點,PO⊥平面ABCD,PO=2,M為PD中點.

(Ⅰ)證明:PB∥平面ACM;
(Ⅱ)證明:AD⊥平面PAC;
(Ⅲ)求直線AM與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

長方體ABCD-A1B1C1D1的側棱AA1=a,底面ABCD的邊長AB=2a,BC=a,E為C1D1的中點;
(1)求證:DE⊥平面BCE;
(2)求二面角E-BD-C的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

四棱錐P-ABCD底面是平行四邊形,面PAB⊥面ABCD,PA=PB=AB=
1
2
AD,∠BAD=60°,E,F(xiàn)分別為AD,PC的中點.
(1)求證:EF面PAB
(2)求證:EF⊥面PBD
(3)求二面角D-PA-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在三棱錐PABC中,不能證明的條件是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

將邊長為的正方形沿對角線折起,使得平面平面,   
在折起后形成的三棱錐中,給出下列三個命題:
①面是等邊三角形; ②; 
③三棱錐的體積是.
其中正確命題的序號是_          .(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設m,n是兩條不同的直線,α,β是兩個不同的平面,給出下列命題:
①若α∥β,m?β,n?α,則m∥n;
②若α∥β,m⊥β,n∥α,則m⊥n;
③若α⊥β,m⊥α,n∥β,則m∥n;
④若α⊥β,m⊥α,n⊥β,則m⊥n.
上面命題中,所有真命題的序號為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖所示,在四棱錐P-ABCD中,PA⊥底面ABCD,且底面各邊都相等,M是PC上的一動點,當點M滿足________時,平面MBD⊥平面PCD.(只要填寫一個你認為是正確的條件即可)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在正四棱柱ABCD-A1B1C1D1中,E,F(xiàn),G,H分別是棱CC1,C1D1,D1D、DC的中點,N是BC的中點,點M在四邊形EFGH及其內部運動,則M滿足條件________時,有MN∥平面B1BDD1.

查看答案和解析>>

同步練習冊答案