4.若tanα=2,則$\frac{sinα+2cosα}{2sinα-cosα}$+cosαsinα等于(  )
A.$\frac{26}{15}$B.$\frac{13}{15}$C.-$\frac{26}{15}$D.-$\frac{13}{15}$

分析 根據(jù)同角三角函數(shù)關(guān)系式即可求解.

解答 解:∵tanα=2,
∴$\frac{sinα+2cosα}{2sinα-cosα}$+cosαsinα=$\frac{tanα+2}{2tanα-1}+\frac{cosαsinα}{si{n}^{2}α+co{s}^{2}α}=\frac{2+2}{2×2-1}+\frac{tanα}{ta{n}^{2}α+1}$=$\frac{4}{3}+\frac{2}{5}=\frac{26}{15}$.
故選A

點評 本題主要考察了同角三角函數(shù)關(guān)系式的應用,屬于基本知識的考查.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

14.下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的生產(chǎn)能耗y(噸標準煤)的幾組對照數(shù)據(jù).
x 345 6
y2.5344.5
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤.試根據(jù)第2題求出的回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.對于函數(shù)f(x),若在其定義域內(nèi)存在兩個實數(shù)a,b(a<b),當x∈[a,b]時,f(x)的值域也是[a,b],則稱函數(shù)f(x)為“Kobe函數(shù)”.若函數(shù)f(x)=k+$\sqrt{x-1}$是“Kobe函數(shù)”,則實數(shù)k的取值范圍是( 。
A.[-1,0]B.[1,+∞)C.$[{-1,-\frac{3}{4}})$D.$({\frac{3}{4},1}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)y=x-ex的增區(qū)間為( 。
A.(1,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.請你設(shè)計一個倉庫.它的上部是底面圓半徑為5m的圓錐,下部是底面圓半徑為5m的圓柱,且該倉庫的總高度為5m.經(jīng)過預算,制造該倉庫的圓錐側(cè)面、圓柱側(cè)面用料的單價分別為4百元/m2,1百元/m2,設(shè)圓錐母線與底面所成角為θ,且$θ∈({0,\frac{π}{4}})$.
(1)設(shè)該倉庫的側(cè)面總造價為y,寫出y關(guān)于θ的函數(shù)關(guān)系式;
(2)問θ為多少時,該倉庫的側(cè)面總造價(單位:百元)最少?并求出此時圓錐的高度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.化簡求值.
(1)${(\frac{1}{4})^{-2}}+{({\frac{1}{{6\sqrt{6}}}})^{{-^{\;}}\frac{1}{3}}}+\frac{{\sqrt{3}+\sqrt{2}}}{{\sqrt{3}-\sqrt{2}}}+\frac{1}{2}•{(1.03)^0}•{(-\sqrt{6})^3}$
(2)(lg2)2+lg20×lg5+log92•log43.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知$θ∈(\frac{π}{2},π),sinθ=\frac{4}{5}$,則cosθ=$-\frac{3}{5}$;$sin(θ+\frac{π}{3})$=$\frac{{4-3\sqrt{3}}}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在(-∞,0]上單調(diào)遞減,若f(-1)=0,則不等式f(2x-1)>0解集為( B  )( 。
A.(-6,0)∪(1,3)B.(-∞,0)∪(1,+∞)C.(-∞,1)∪(3,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=sinx+cosx,g(x)=sinx-cosx,其中x∈(0,π).
(1)若$f(θ)=\frac{1}{5}$,求tanθ的值;
(2)若$\frac{f(θ)}{g(θ)}=\frac{1}{5}$,求tanθ的值.

查看答案和解析>>

同步練習冊答案