【題目】設(shè)f(x)=(lnx)ln(1﹣x).
(1)求函數(shù)y=f(x)的圖象在( ,f( ))處的切線方程;
(2)求函數(shù)y=f′(x)的零點(diǎn).
【答案】
(1)解:f′(x)= ,
故f( )=ln2 ,f′( )=0,
故切線方程是:y=ln2
(2)解:由(1)得,令f′(x)=0,即(1﹣x)ln(1﹣x)﹣xlnx=0,
令h(x)=(1﹣x)ln(1﹣x)﹣xlnx,(0<x<1),
則h′(x)=lnx(1﹣x),h″(x)= ,
令h″(x)>0,解得:0<x< ,
令h″(x)<0,解得:x> ,
故h′(x)在(0, )遞增,在( ,+∞)遞減,
故h′(x)<h′( )=ln <0,
故h(x)在(0,1)遞減,
而h( )=0,
故h(x)在(0,1)的零點(diǎn)是x= .
【解析】(1)求出函數(shù)的導(dǎo)數(shù),計(jì)算f( ),f′( ),求出切線方程即可;(2)令f′(x)=0,即(1﹣x)ln(1﹣x)﹣xlnx=0,令h(x)=(1﹣x)ln(1﹣x)﹣xlnx,(0<x<1),根據(jù)函數(shù)的單調(diào)性求出函數(shù)的零點(diǎn)即可.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知長方體ABCD中, 為DC的中點(diǎn).將△ADM沿AM折起,使得AD⊥BM.
(1)求證:平面ADM⊥平面ABCM;
(2)是否存在滿足 的點(diǎn)E,使得二面角E﹣AM﹣D為大小為 .若存在,求出相應(yīng)的實(shí)數(shù)t;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在區(qū)間(0,+∞)內(nèi)的單調(diào)函數(shù),且對(duì)x∈(0,∞),都有f[f(x)﹣lnx]=e+1,設(shè)f′(x)為f(x)的導(dǎo)函數(shù),則函數(shù)g(x)=f(x)﹣f′(x)的零點(diǎn)個(gè)數(shù)為( )
A.0
B.l
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx,g(x)=lnx﹣x+2.
(1)求函數(shù)g(x)的極大值;
(2)若關(guān)于x的不等式 在[1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
(3)已知 ,試比較f(tanα)與﹣cos2α的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是∠A,∠B,∠C的對(duì)邊.若(a+b﹣c)(a+b+c)=ab,c= ,當(dāng)ab取得最大值時(shí),S△ABC= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖沖之之子祖暅?zhǔn)俏覈媳背瘯r(shí)代偉大的科學(xué)家,他在實(shí)踐的基礎(chǔ)上提出了體積計(jì)算的原理:“冪勢既同,則積不容異”.意思是,如果兩個(gè)等高的幾何體在同高處截得的截面面積恒等,那么這兩個(gè)幾何體的體積相等.此即祖暅原理.利用這個(gè)原理求球的體積時(shí),需要構(gòu)造一個(gè)滿足條件的幾何體,已知該幾何體三視圖如圖所示,用一個(gè)與該幾何體的下底面平行相距為h(0<h<2)的平面截該幾何體,則截面面積為( )
A.4π
B.πh2
C.π(2﹣h)2
D.π(4﹣h)2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,e為自然對(duì)數(shù)的底數(shù).
(1)求曲線y=f(x)在x=e﹣2處的切線方程;
(2)關(guān)于x的不等式f(x)≥λ(x﹣1)在(0,+∞)上恒成立,求實(shí)數(shù)λ的值;
(3)關(guān)于x的方程f(x)=a有兩個(gè)實(shí)根x1 , x2 , 求證:|x1﹣x2|<2a+1+e﹣2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1、F2為雙曲線C: (a>0,b>0)的左、右焦點(diǎn),點(diǎn)P為雙曲線C右支上一點(diǎn),直線PF1與圓x2+y2=a2相切,且|PF2|=|F1F2|,則雙曲線C的離心率為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)y=sin(2x+ )的圖象,只需將y=cos(2x﹣ )圖象上的所有點(diǎn)( )
A.向左平行移動(dòng) 個(gè)單位長度
B.向右平行移動(dòng) 個(gè)單位長度
C.向左平行移動(dòng) 個(gè)單位長度
D.向右平行移動(dòng) 個(gè)單位長度
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com