在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.已知圓C的極坐標(biāo)方程為ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)將極坐標(biāo)方程化為普通方程,并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(2)若點(diǎn)P(x,y)在圓C上,求x+y的最大值和最小值.
分析:(1)展開兩角差的余弦,整理后代入ρcosθ=x,ρsinθ=y得圓的普通方程,化為標(biāo)準(zhǔn)方程后由三角函數(shù)的平方關(guān)系化參數(shù)方程;
(2)把x,y分別代入?yún)?shù)式,利用三角函數(shù)化積后借助于三角函數(shù)的有界性求最值.
解答:解:(1)由ρ2-4
2
ρcos(θ-
π
4
)+6=0
,得
ρ2-4
2
ρ(cosθcos
π
4
+sinθsin
π
4
)+6=0
,
ρ2-4
2
ρ(
2
2
cosθ+
2
2
sinθ)+6=0

ρ2-4ρcosθ-4ρsinθ+6=0,
即x2+y2-4x-4y+6=0為所求圓的普通方程,
整理為圓的標(biāo)準(zhǔn)方程(x-2)2+(y-2)2=2,
令x-2=
2
cosα
,y-2=
2
sinα

得圓的參數(shù)方程為
x=2+
2
cosα
y=2+
2
sinα
 (α為參數(shù));
(2)由(1)得:
x+y=4+
2
(cosα+sinα)
=4+2sin(α+
π
4
),
∴當(dāng)sin(α+
π
4
)=1時(shí),x+y的最大值為6,
當(dāng)sin(α+
π
4
)=-1時(shí),x+y的最小值為2.
故x+y的最大值和最小值分別是6和2.
點(diǎn)評(píng):本題考查了點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,考查了普通方程和參數(shù)方程的互化,訓(xùn)練了asinθ+bcosθ的化積公式,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2.F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的點(diǎn)N滿足
MN
=
MF1
+
MF2
,直線l∥MN,且與C1交于A,B兩點(diǎn),若
OA
OB
=0
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知點(diǎn)P(2cosx+1,2cos2x+2)和點(diǎn)Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在直角坐標(biāo)系xOy中,射線OA在第一象限,且與x軸的正半軸成定角60°,動(dòng)點(diǎn)P在射線OA上運(yùn)動(dòng),動(dòng)點(diǎn)Q在y軸的正半軸上運(yùn)動(dòng),△POQ的面積為2
3

(1)求線段PQ中點(diǎn)M的軌跡C的方程;
(2)R1,R2是曲線C上的動(dòng)點(diǎn),R1,R2到y(tǒng)軸的距離之和為1,設(shè)u為R1,R2到x軸的距離之積.問(wèn):是否存在最大的常數(shù)m,使u≥m恒成立?若存在,求出這個(gè)m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線l的參數(shù)方程為
x=tcosθ
y=1+tsinθ
(t
為參數(shù))
(I)求圓M的圓心的軌跡C的參數(shù)方程,并說(shuō)明它表示什么曲線;
(II)求直線l被軌跡C截得的最大弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左右兩個(gè)焦分別為F1,F(xiàn)2.過(guò)右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=2.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的一個(gè)頂點(diǎn)為B(0,-b),是否存在直線l:y=x+m,使點(diǎn)B關(guān)于直線l 的對(duì)稱點(diǎn)落在橢圓C上,若存在,求出直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案