14.在區(qū)間(0,4)上任取一實數(shù)x,則2x<2的概率是(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

分析 求出不等式的等價條件,結合幾何概型的概率公式進行求解即可.

解答 解:由2x<2得x<1,
則在區(qū)間(0,4)上任取一數(shù)x,則2x<2的概率P=$\frac{1-0}{4-0}$=$\frac{1}{4}$,
故選:D.

點評 本題主要考查幾何概型的概率的計算,根據(jù)不等式的性質求出不等式的等價條件是解決本題的關鍵.比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=1,$\overrightarrow{a}$•$\overrightarrow$=-1,且$\overrightarrow{a}$-$\overrightarrow{c}$與$\overrightarrow$-$\overrightarrow{c}$的夾角為$\frac{π}{4}$,則|$\overrightarrow{c}$|的最大值為(  )
A.$\sqrt{10}$B.2$\sqrt{2}$C.$\sqrt{5}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}前n項和Sn滿足:2Sn+an=1.
(1)求數(shù)列{an}的通項公式;
(2)設$bn=\frac{2}{{{{log}_3}{a_n}•{{log}_3}{a_{n+1}}}}$,數(shù)列{bn}的前n項和為Tn,求證:Tn<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,面積為S,且滿足4S=a2-(b-c)2,b+c=8,則S的最大值為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知集合A={x|x(x-3)<0},B={-1,0,1,2,3},則A∩B=( 。
A.{-1}B.{1,2}C.{0,3}D.{-1,1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知變量x,y滿足約束任務$\left\{\begin{array}{l}{x+y-5≤0}\\{x-2y+1≤0}\\{x-1≥0}\end{array}\right.$,則z=x+2y的最小值是3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右兩個焦點F1,F(xiàn)2,離心率$e=\frac{{\sqrt{2}}}{2}$,短軸長為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,點A為橢圓上一動點(非長軸端點),AF2的延長線與橢圓交于B點,AO的延長線與橢圓交于C點,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.數(shù)列{an}的前n項和${S_n}=A{n^2}+Bn+q(A≠0)$,則q=0是{an}為等差數(shù)列的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在等比數(shù)列{an}中,${a_2}=4{,^{\;}}{a_5}=32$.
(1)求數(shù)列{an}的通項公式;
(2)若${a_3}{,^{\;}}{a_5}$分別為等差數(shù)列{bn}的第4項和第16項,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案