15.如圖,四邊形ABCD內(nèi)接于⊙O,AD是⊙O的直徑,若∠CBE=70°,則圓心角∠AOC=( 。
A.110°B.120°C.130°D.140°

分析 利用補(bǔ)角的定義、圓內(nèi)接四邊形的性質(zhì)求得圓周角∠ADC=70°,然后根據(jù)OD=OC可得∠OCD=∠ADC=70°,即可求得∠AOC的度數(shù).

解答 解:∵∠CBE=70°,∠CBE+∠CBA=180°,
∴∠CBA=110°;
又∵∠CBA+∠ADC=180°(圓的內(nèi)接四邊形中對(duì)角互補(bǔ)),
∴∠ADC=70°;
∵AD是⊙O的直徑,OD=OC,
∴∠OCD=∠ADC=70°
∴∠AOC=∠OCD+∠ADC=140°.
故選:D.

點(diǎn)評(píng) 本題考查了圓內(nèi)接四邊形的性質(zhì),圓內(nèi)接四邊形的對(duì)角互補(bǔ),考查了推理論證能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知△ABC的頂點(diǎn)坐標(biāo)分別為A(1,1),B(4,1),C(4,5).則cosA=$\frac{3}{5}$;△ABC的邊AC上的高h(yuǎn)=$\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{13π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.一個(gè)幾何體的三視圖如圖所示,該幾何體的體積為( 。
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$\frac{8}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.πD.$\frac{4π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=|x-$\frac{1}{2}$|+|x-$\frac{3}{2}$|,記f(x)≤2的解集為M.
(Ⅰ)求集合M
(Ⅱ)若a∈M,試比較a2-a+1與$\frac{1}{a}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=m-|x-3|,不等式f(x)>1的解集為(1,5);
(1)求實(shí)數(shù)m的值;
(2)若關(guān)于x的不等式|x-a|≥f(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)|x-2|≤a(a>0)時(shí),不等式|x2-4|<3成立,則正數(shù)a的取值范圍為( 。
A.a>$\sqrt{7}$-2B.0<a<$\sqrt{7}$-2C.a≥$\sqrt{7}$-2D.0<a≤$\sqrt{7}$-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)(x2+1)(2x+1)9=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11,則a0+a1+a2+…+a11=-2,a11=512.

查看答案和解析>>

同步練習(xí)冊(cè)答案