精英家教網 > 高中數學 > 題目詳情
(2005•金山區(qū)一模)某企業(yè)準備在2006年對員工增加獎金200元,其中有120元是基本獎金.預計在今后的若干年內,該企業(yè)每年新增加的獎金平均比上一年增長8%.另外,每年新增加的獎金中,基本獎金均比上一年增加30元.那么,到哪一年底,
(1)該企業(yè)歷年所增加的獎金中基本獎金累計(以2006年為累計的第一年)將首次不少于750元?
(2)當年增加的基本獎金占該年增加獎金的比例首次大于85%?
分析:(1)設基本獎金形成數列{an},由題意可知{an}是等差數列,然后求出該數列的前n項和,最后根據歷年所增加的獎金中基本獎金累計(以2006年為累計的第一年)將首次不少于750元建立關系式,解之即可求出所求;
(2)設新增加的獎金形成數列{bn},由題意可知{bn}是等比數列,然后根據題意可知an>0.85 bn,解之即可求出所求.
解答:解:(1)設基本獎金形成數列{an},由題意可知{an}是等差數列,
(或a1=120,,d=30,或an=120+30 (n-1))(1分)
Sn=a1n+
1
2
n(n-1)d(2分)
則Sn=120n+15n(n-1)=15n2+105n=15(n2+7n)(4分)
令15n2+105n≥750,即n2+7n-50≥0,而n是正整數,∴n≥5.(5分)
到2010年底該企業(yè)歷年所增加的工資中基本工資累計將首次不少于750元.(6分)
(2)設新增加的獎金形成數列{bn},由題意可知{bn}是等比數列,(或b1=200,q=1.08,或bn=bn-1q) (7分)
則bn=200•(1.08)n-1(9分)
由題意可知an>0.85 bn,有120+30 (n-1)>200•(1.08)n-1•0.85. (11分)
由計箅器解得滿足上述不等式的最小正整數n=5,(13分)
到2010年底,當年增加的基本獎金占該年增加獎金的比例首次大于85% (14分)
點評:本題主要考查了等差數列和等比數列的綜合運用,同時考查了數列的求和和一元二次不等式的解法,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2005•金山區(qū)一模)對于集合N={1,2,3,…,n}的每一個非空子集,定義一個“交替和”如下:按照遞減的次序重新排列該子集,然后從最大數開始交替地減、加后繼的數.例如集合{1,2,4,6,9}的交替和是9-6+4-2+1=6,集合{5}的交替和為5.當集合N中的n=2時,集合N={1,2}的所有非空子集為{1},{2},{1,2},則它的“交替和”的總和S2=1+2+(2-1)=4,請你嘗試對n=3、n=4的情況,計算它的“交替和”的總和S3、S4,并根據其結果猜測集合N={1,2,3,…,n}的每一個非空子集的“交替和”的總和Sn=
n•2n-1
n•2n-1

查看答案和解析>>

科目:高中數學 來源: 題型:

(2005•金山區(qū)一模)已知集合A={x|y=lg(x-3)},B={x|y=
5-x
},則A∩B=
{x|3<x≤5}
{x|3<x≤5}

查看答案和解析>>

科目:高中數學 來源: 題型:

(2005•金山區(qū)一模)定義在R上的函數f(x)是奇函數,則f(0)的值為
0
0

查看答案和解析>>

科目:高中數學 來源: 題型:

(2005•金山區(qū)一模)設函數f(x)=lgx,則它的反函數f-1(x)=
10x,x∈R
10x,x∈R

查看答案和解析>>

科目:高中數學 來源: 題型:

(2005•金山區(qū)一模)若復數z1=3-i,z2=7+2i,(i為虛數單位),則|z2-z1|=
5
5

查看答案和解析>>

同步練習冊答案