【題目】若a,b是函數(shù)f(x)=x2﹣px+q(p>0,q>0)的兩個不同的零點,且a,b,﹣2這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則p+q的值等于( )
A.6
B.7
C.8
D.9
【答案】D
【解析】解:由題意可得:a+b=p,ab=q,
∵p>0,q>0,
可得a>0,b>0,
又a,b,﹣2這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,
可得 ①或 ②.
解①得: ;解②得: .
∴p=a+b=5,q=1×4=4,
則p+q=9.
故選:D.
【考點精析】認真審題,首先需要了解等差數(shù)列的性質(zhì)(在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列),還要掌握等比數(shù)列的基本性質(zhì)({an}為等比數(shù)列,則下標成等差數(shù)列的對應項成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項不為零的常數(shù)列)的相關知識才是答題的關鍵.
科目:高中數(shù)學 來源: 題型:
【題目】某高校在今年的自主招生考試成績中隨機抽取 100 名考生的筆試成績,分為 5 組制出頻率分布直方圖如圖所示.
組號 | 分組 | 頻數(shù) | 頻率 |
1 | 5 | 0.05 | |
2 | 35 | 0.35 | |
3 | |||
4 | |||
5 | 10 | 0.1 |
(1)求的值.
(2)該校決定在成績較好的 、4、5 組用分層抽樣抽取 6 名學生進行面試,則每組應各抽多少名學生?
(3)在(2)的前提下,從抽到 6 名學生中再隨機抽取 2 名被甲考官面試,求這 2 名學生來自同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|ex﹣e2a|,若f(x)在區(qū)間(﹣1,3﹣a)內(nèi)的圖象上存在兩點,在這兩點處的切線相互垂直,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=2x3﹣6x2+m(m為常數(shù)),在[﹣2,2]上有最大值3,那么此函數(shù)在[﹣2,2]上的最小值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元到1000萬元的投資收益.現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(1)若建立函數(shù)y=f(x)模型制定獎勵方案,試用數(shù)學語言表述該公司對獎勵函數(shù)f(x)模型的基本要求,并分析函數(shù)y= 是否符合公司要求的獎勵函數(shù)模型,并說明原因;
(2)若該公司采用模型函數(shù)y= 作為獎勵函數(shù)模型,試確定最小的正整數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列{an}的公差為d,前n項和為Sn , 等比數(shù)列{bn}的公比為q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求數(shù)列{an},{bn}的通項公式
(2)當d>1時,記cn= ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A={x|x2-ax+a2-19=0},B={ x|x2-5x+6=0},C={x|x2+2x-8=0},且(A∩B),A∩C=,求的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: 的右焦點為F(1,0),且點(﹣1, )在橢圓C上.
(1)求橢圓C的標準方程;
(2)已知動直線l過點F,且與橢圓C交于A,B兩點,試問x軸上是否存在定點Q,使得 恒成立?若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com