15.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn)分別為F1,F(xiàn)2,過F2的直線與橢圓交于A,B兩點(diǎn),若△F1AB是以A為直角頂點(diǎn)的等腰直角三角形,則橢圓離心率為$\sqrt{6}-\sqrt{3}$.

分析 如圖所示,設(shè)|AF1|=m,則|AF2|=2a-m,|BF2|=2m-2a,|BF1|=4a-2m,根據(jù)△F1AB是以A為直角頂點(diǎn)的等腰直角三角形,可得m2+(2a-m)2=4c2,m2+m2=(4a-2m)2,聯(lián)立解出即可得出.

解答 解:如圖所示,
設(shè)|AF1|=m,則|AF2|=2a-m,|BF2|=2m-2a,|BF1|=4a-2m,
∵△F1AB是以A為直角頂點(diǎn)的等腰直角三角形,
∴m2+(2a-m)2=4c2
m2+m2=(4a-2m)2,
聯(lián)立解得:m=(4-2$\sqrt{2}$)a,e2=9-6$\sqrt{2}$,
解得e=$\sqrt{6}-\sqrt{3}$.
故答案為:$\sqrt{6}-\sqrt{3}$.

點(diǎn)評(píng) 本題考查了橢圓的定義及其性質(zhì)、勾股定理、等腰直角三角形的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}x-5,({x≥6})\\ f({x+2}),({x<6})\end{array}\right.$,則f(2)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.?dāng)?shù)列{an}滿足a1=2,an+1-2an=0,數(shù)列{bn}的通項(xiàng)公式滿足關(guān)系式an•bn=(-1)n(n∈N*),則bn=$(-\frac{1}{2})^{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若cos(π+α)=-$\frac{1}{2}$,$\frac{3}{2}$π<α<2π,則sin(3π-α)等于-$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.直線y=-x+3的傾斜角是( 。
A.$\frac{3π}{4}$B.$-\frac{π}{4}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)既是奇函數(shù),又在區(qū)間[-1,1]上單調(diào)遞減的是( 。
A.f(x)=sinxB.f(x)=-|x+1|
C.$f(x)=ln\frac{2-x}{2+x}$D.f(x)=$\frac{1}{2}$(ax+a-x),(a>0,a≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖為一個(gè)觀覽車示意圖.該觀覽車圓半徑為4.8m,圓上最低點(diǎn)與地面距離為0.8m,60秒轉(zhuǎn)動(dòng)一圈.圖中OA與地面垂直,現(xiàn)以O(shè)A為始邊,逆時(shí)針轉(zhuǎn)動(dòng)θ角到OB,設(shè)B點(diǎn)與地面的距離為h.
(1)求h與θ的函數(shù)解析式;
(2)設(shè)從OA開始轉(zhuǎn)動(dòng),經(jīng)過t秒到達(dá)OB,求h與t的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在等比數(shù)列{an}中,已知a3=2,a7=6,則公比q=$±\root{4}{3}$,a15=54,a20=±162$\root{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某客運(yùn)部門規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為:不超過25kg按0.5元/kg收費(fèi),超過25kg的部分按0.8元/kg收費(fèi),計(jì)算收費(fèi)的程序框圖如圖所示,則①②處應(yīng)填(  )
A.y=0.8x    y=0.5xB.y=0.5x    y=0.8x
C.y=25×0.5+(x-25)×0.8    y=0.5xD.y=25×0.5+0.8x    y=0.8x

查看答案和解析>>

同步練習(xí)冊(cè)答案