5.已知曲線y=$\frac{x^2}{2}$-3lnx的一條切線的斜率為-2,則切點的橫坐標(biāo)為( 。
A.3B.1C.-3或1D.1或3

分析 根據(jù)斜率,對已知函數(shù)求導(dǎo),解出橫坐標(biāo),要注意自變量的取值區(qū)間.

解答 解:設(shè)切點的橫坐標(biāo)為(x0,y0
∵曲線y=$\frac{1}{2}$x2-3lnx的一條切線的斜率為-2,
∴y′=x0-$\frac{3}{{x}_{0}}$=-2,
解得:x0=-3或1,
∵x>0,
∴x0=1.
故選:B.

點評 考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題,對于一個給定的函數(shù)來說,要考慮它的定義域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|x>1},B={x|0<x<2},則B∩∁RA=( 。
A.(1,2)B.[1,+∞)C.(0,1]D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某種產(chǎn)品的廣告費用支出x萬元與銷售額y萬元之間有如圖的對應(yīng)數(shù)據(jù):
x24568
y3030505070
(Ⅰ)畫出上表數(shù)據(jù)的散點圖;
(Ⅱ)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(Ⅲ)據(jù)此估計廣告費用為10萬元時,所得的銷售收入.
(參考數(shù)值:$\sum_{i=1}^5{{x_i}^2}=145$,$\sum_{i=1}^5{{x_i}{y_i}}=1270$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列結(jié)論正確的個數(shù)是(  )
①cosα≠0是a≠2kπ+$\frac{π}{2}$(k∈Z)的充分必要條件;
②若將一組樣本數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù),則樣本的方差不變;
③先后拋兩枚硬幣,用事件A表示“第一次拋硬幣出現(xiàn)正面向上”,用事件B表示“第二次拋硬幣出現(xiàn)反
面向上”,則事件A和B相互獨立且P(AB)=P(A)P(B)=$\frac{1}{2}$×$\frac{1}{2}$=$\frac{1}{4}$;
④在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0),若ξ位于區(qū)域(0,1)內(nèi)的概率為0.4,則ξ位于區(qū)域(1,+∞)內(nèi)的概率為0.6.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點M(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),且其離心率為$\frac{\sqrt{2}}{2}$,F(xiàn)1、F2分別為橢圓C的左、右焦點.設(shè)直線l:y=kx+m與橢圓C相交于A,B兩點,O為坐標(biāo)原點.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)當(dāng)m=-2時,求△OAB的面積的最大值;
(III)以線段OA,OB為鄰邊作平行四邊形OAPB,若點Q在橢圓C上,且滿足$\overrightarrow{OP}$=λ$\overrightarrow{OQ}$,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=-x2+x+1(-1≤x≤1),回答下列問題:
(1)若-1≤x1<x2≤$\frac{1}{2}$,試比較f(x1),f(x2)的大。
(2)是否存在x0∈[-1,1],使得f(x0)=-2?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某高中男子體育小組的50m賽跑成績(單位:s)如下:
6.4,6.5,7.0,6.8,7.1,7.3,6.9,7.4,7.5,7.6,6.3,6.4,6.4,6.5,6.7,7.1,6.9,6.4,7.1,7.0
設(shè)計一個程序從這些成績中搜索出小于6.8s的成績.并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,三棱錐A-BCD中,AB⊥平面BCD,CD⊥BD.
(1)求證:平面ACD⊥平面ABD;
(2)若M為AD中點,AB=BD=1,三棱錐A-MBC的體積為$\frac{1}{12}$,求CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.三個數(shù)a=$\sqrt{0.31}$,b=log20.31,c=20.31之間的大小關(guān)系是( 。
A.a<c<bB.b<a<cC.a<b<cD.b<c<a

查看答案和解析>>

同步練習(xí)冊答案