已知定義在R上的函數(shù)f(x)=2cos(
1
2
x-
π
6
),則函數(shù)的單調增區(qū)間是
 
考點:余弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質
分析:由余弦函數(shù)的單調性,解不等式2kπ-π≤
1
2
x-
π
6
≤2kπ可得答案.
解答: 解:∵f(x)=2cos(
1
2
x-
π
6
),
∴由2kπ-π≤
1
2
x-
π
6
≤2kπ可得4kπ-
3
≤x≤4kπ+
π
3
,k∈Z
∴原函數(shù)的單調增區(qū)間為:[4kπ-
3
,4kπ+
π
3
],k∈Z
故答案為:[4kπ-
3
,4kπ+
π
3
],k∈Z
點評:本題考查余弦函數(shù)的單調性,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一底面半徑為rcm,高為hcm的倒立圓錐容器,若以ncm3∕s的速率向容器內注水,求液面高度的瞬時變化率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,函數(shù)y=x+a,y=ax(a>0,a≠1)的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式組
x+y≥1
x-2y≤4
的解集記為D,若?(x,y)∈D,則(  )
A、x+2y≥-2
B、x+2y≥2
C、x-2y≥-2
D、x-2y≥2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某賽季,甲、乙兩名籃球運動員都參加了11場比賽,他們在這11場比賽的得分用下面的莖葉圖表示,設甲運動員得分的中位數(shù)為M1,乙運動員得分的中位數(shù)為M2,則在下列選項中,正確的是( 。
A、M1=18,M2=11
B、M1=81,M2=12
C、M1=8,M2=2
D、M1=3,M2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

易知n2=1+2+3+…+n+(n-1)+…+2+1,故有13=1,23=2•22=2(1+2+1)=2+4+2;33=3•32=3(1+2+3+2+1)=3+6+9+6+3,…,這些通過分拆得到的數(shù)可組成數(shù)陣認真觀察數(shù)陣,可以求出和式S=13+23+33+…+203的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的不等式mx2+2mx-4<2x2+4x時對任意實數(shù)l均成立,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的不等ax2-3x+2>0的解集{x|x<1或x>b}
(Ⅰ)求a,b的值;
(Ⅱ)解關于x的不等式:ax2-(ac+b)x+bx<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x1、x2∈[0,+∞),x1≠x2,恒有
f(x2)-f(x1)
x2-x1
>0
成立,則以下結論正確的是( 。
A、f(2)>f(-1)>f(-3)
B、f(2)>f(-3)>f(-1)
C、f(-3)>f(2)>f(-1)
D、f(-3)>f(-1)>f(2)

查看答案和解析>>

同步練習冊答案