13.下列四組函數(shù)中,表示同一函數(shù)的是(  )
A.f(x)=lgx2,g(x)=2lgxB.f(x)=$\sqrt{x+2}$•$\sqrt{x-2}$,g(x)=$\sqrt{(x+2)(x-2)}$
C.f(x)=x-2,g(x)=$\sqrt{({x-2)}^{2}}$D.f(x)=lgx-2,g(x)=lg$\frac{x}{100}$

分析 根據(jù)兩個(gè)函數(shù)的定義域相同,對(duì)應(yīng)關(guān)系也相同,即可判斷它們是同一函數(shù).

解答 解:對(duì)于A,f(x)=lgx2=2lg|x|(x$\sqrt{≠}$0),與g(x)=2lgx(x>0)的定義域不同,對(duì)應(yīng)關(guān)系也不同,不是同一函數(shù);
對(duì)于B,f(x)=$\sqrt{x+2}$•$\sqrt{x-2}$=$\sqrt{(x+2)(x-2)}$(x≥2),與g(x)=$\sqrt{(x+2)(x-2)}$(x≤-2或x≥2)的定義域不同,不是同一函數(shù);
對(duì)于C,f(x)=x-2(x∈R),與g(x)=$\sqrt{{(x-2)}^{2}}$=|x-2|(x∈R)的對(duì)應(yīng)關(guān)系不同,不是同一函數(shù);
對(duì)于D,f(x)=lgx-2(x>0),與g(x)=lg$\frac{x}{100}$=lgx-2(x>0)的定義域相同,對(duì)應(yīng)關(guān)系也相同,是同一函數(shù).
故選:D.

點(diǎn)評(píng) 本題考查了判斷兩個(gè)函數(shù)是否為同一函數(shù)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.給定下列命題,其中真命題的個(gè)數(shù)為:(  )
①已知a,b,m∈R,若am2<bm2,則a<b;
②“矩形的對(duì)角線相等”的逆命題;
③“若xy=0,則x、y中至少有一個(gè)為0”的否命題;
④如果將一組數(shù)據(jù)中的每一個(gè)數(shù)都加上同一個(gè)非零常數(shù),那么這組數(shù)據(jù)的平均數(shù)和方差都改變.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若直線ax+by=r2與圓x2+y2=r2沒(méi)有公共點(diǎn),則點(diǎn)P(a,b)與圓的位置關(guān)系是(  )
A.在圓上B.在圓內(nèi)C.在圓外D.以上皆有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.曲線y=x2+1在點(diǎn)P(-1,2)處的切線方程為(  )
A.y=-x+3B.y=-2x+4C.y=-x+1D.y=-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=mx3+nx(x∈R).若函數(shù)f(x)的圖象在點(diǎn)x=3處的切線與直線24x-y+1=0平行,函數(shù)f(x)在x=1處取得極值,
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)在[-2,3]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知sinα+cosα=$\frac{2}{3}$,且0<α<π,則cosα-sinα=( 。
A.$\frac{2\sqrt{3}}{3}$B.-$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{14}}{3}$D.-$\frac{\sqrt{14}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在四邊形ABCD中,$\overrightarrow{AB}$=(2,-2),$\overrightarrow{BC}$=(x,y),$\overrightarrow{CD}$=(1,$\frac{7}{2}$).
(1)若$\overrightarrow{BC}$∥$\overrightarrow{DA}$,求x,y之間的關(guān)系式;
(2)滿足(1)的同時(shí)又有$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,求x,y的值以及四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知圓C:x2+(y-1)2=9,直線l:x-my+m-2=0,且直線l與圓C相交于A、B兩點(diǎn).
(Ⅰ)若|AB|=4$\sqrt{2}$,求直線l的傾斜角;
(Ⅱ)若點(diǎn)P(2,1)滿足$\overrightarrow{AP}$=$\overrightarrow{PB}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,在△ABC中,AB=2,AC=3,∠BAC=60°,AD是∠BAC的角平分線交BC于D,則$\overrightarrow{AD}$$•\overrightarrow{AC}$的值等于( 。
A.$\frac{17}{5}$B.$\frac{33}{5}$C.6D.$\frac{27}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案