【題目】已知P是橢圓 上任意一點,過橢圓的右頂點A和上頂點B分別作x軸和y軸的垂線,兩垂線交于點C,過P作AC,BC的平行線交BC于點M,交AC于點N,交AB于點D,E,矩形PMCN的面積是S1 , 三角形PDE的面積是S2 , 則 =( )
A.2
B.1
C.
D.

【答案】A
【解析】解:設(shè)P(x,y)在第一象限,則AB的方程為 + =1,
∴D(5﹣ ,y),E(x,3﹣ ),
∴SADN= × = ,
∴SACME= )×(5﹣x)= (25﹣x2),
∵P(x,y)在橢圓上,∴
∴y2=9﹣ ,
= (25﹣x2),
∴SADN=SACME ,
∴S1=S2 ,
=2.
故選A.

【考點精析】根據(jù)題目的已知條件,利用橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識可以得到問題的答案,需要掌握橢圓標(biāo)準(zhǔn)方程焦點在x軸:,焦點在y軸:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知雙曲線C: =1(a>0,b>0)的右頂點為A,O為坐標(biāo)原點,以A為圓心的圓與雙曲線C的某漸近線交于兩點P,Q,若∠PAQ= ,且 |,則雙曲線C的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|. (Ⅰ)若關(guān)于x的不等式f(x)<g(x)有解,求實數(shù)a的取值范圍;
(Ⅱ)若關(guān)于x的不等式f(x)<g(x)的解集為 ,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列共有四個命題: ⑴命題“ ”的否定是“x∈R,x2+1<3x”;
⑵在回歸分析中,相關(guān)指數(shù)R2為0.96的模型比R2為0.84的模型擬合效果好;
⑶a,b∈R, ,則p是q的充分不必要條件;
⑷已知冪函數(shù)f(x)=(m2﹣3m+3)xm為偶函數(shù),則f(﹣2)=4.
其中正確的序號為 . (寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) . (Ⅰ)證明:f(x)≥5;
(Ⅱ)若f(1)<6成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生社團在對本校學(xué)生學(xué)習(xí)方法開展問卷調(diào)查的過程中發(fā)現(xiàn),在回收上來的1000份有效問卷中,同學(xué)們背英語單詞的時間安排共有兩種:白天背和晚上臨睡前背.為研究背單詞時間安排對記憶效果的影響,該社團以5%的比例對這1000名學(xué)生按時間安排糞型進行分層抽樣,并完成一項實驗,實驗方法是,使兩組學(xué)生記憶40個無意義音節(jié)(如xIQ、GEH),均要求在剛能全部記清時就停止識記,并在8小時后進行記憶測驗.不同的是,甲組同學(xué)識記結(jié)束后一直不睡覺,8小時后測驗;乙組同學(xué)識記停止后立刻睡覺,8小時后叫醒測驗.兩組同學(xué)識記停止8小時后的準(zhǔn)確回憶(保持)情況如圖(區(qū)間含左端點而不舍右端點)
(1)估計1000名被調(diào)查的學(xué)生中識記停止后8小時40個音節(jié)的保持率大于等于60%的人數(shù);
(2)從乙組準(zhǔn)確回憶結(jié)束在|12,24)范圍內(nèi)的學(xué)生中隨機選3人,記能準(zhǔn)確回憶20個以上(含20)的人數(shù)為隨機變量x.求X分布列及數(shù)學(xué)期望;
(3)從本次實驗的結(jié)果來看,上述兩種時間安排方法中哪種方法背英語單詞記憶效果更好?計算并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}中,已知a3=5,且a1 , a2 , a5為遞增的等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}的通項公式 (k∈N*),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣lnx,F(xiàn)(x)=ex+ax,其中x>0,a<0.
(1)若f(x)和F(x)在區(qū)間(0,ln3)上具有相同的單調(diào)性,求實數(shù)a的取值范圍;
(2)若a∈(﹣∞,﹣ ],且函數(shù)g(x)=xeax1﹣2ax+f(x)的最小值為M,求M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩個單位向量 , 的夾角為60°,點C在以O(shè)圓心的圓弧AB上移動, =x +y ,則x+y的最大值為(
A.1
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案