【題目】三國時(shí)代吳國數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明,左上面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí),圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)以及黃實(shí),并且利用勾股(股勾)朱實(shí)黃實(shí)弦實(shí),化簡(jiǎn)得勾股弦,設(shè)勾股中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲顆圖釘,則落在黃色圖形內(nèi)的圖釘數(shù)大約為_______________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點(diǎn)為,焦距為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線與橢圓的另一個(gè)交點(diǎn)為點(diǎn),與圓的另一個(gè)交點(diǎn)為點(diǎn),是否存在直線使得?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過的直線與拋物線相交于兩點(diǎn).
(1)若點(diǎn)是點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn),求面積的最小值;
(2)是否存在垂直于軸的直線,使得被以為直徑的圓截得的弦長恒為定值?若存在,求出的方程和定值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保護(hù)環(huán)境,某工廠在國家的號(hào)召下,把廢棄物回收轉(zhuǎn)化為某種產(chǎn)品,經(jīng)測(cè)算,處理成本(萬元)與處理量(噸)之間的函數(shù)關(guān)系可近似的表示為:
,且每處理一噸廢棄物可得價(jià)值為萬元的某種產(chǎn)品,同時(shí)獲得國家補(bǔ)貼萬元.
(1)當(dāng)時(shí),判斷該項(xiàng)舉措能否獲利?如果能獲利,求出最大利潤;
如果不能獲利,請(qǐng)求出國家最少補(bǔ)貼多少萬元,該工廠才不會(huì)虧損?
(2)當(dāng)處理量為多少噸時(shí),每噸的平均處理成本最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年第一期中國青年閱讀指數(shù)數(shù)據(jù)顯示,從閱讀需求的角度,排名前三的閱讀領(lǐng)域分別為文學(xué)、哲學(xué)及社會(huì)科學(xué)和歷史.某學(xué)校從文科生和理科生中選取了經(jīng)常閱讀的學(xué)生進(jìn)行了假期閱讀內(nèi)容和閱讀時(shí)間方面的調(diào)查,得到以下數(shù)據(jù).
學(xué)生所學(xué)文理與閱讀內(nèi)容列聯(lián)表
文學(xué)閱讀人數(shù) | 非文學(xué)閱讀人數(shù) | 調(diào)查人數(shù) | |
理科生 | 70 | 130 | 200 |
文科生 | 45 | 55 | 100 |
合計(jì) | 115 | 185 | 300 |
(Ⅰ)判斷能否有把握認(rèn)為學(xué)生所學(xué)文理與閱讀內(nèi)容有關(guān)?
(Ⅱ)從閱讀時(shí)間大于30分鐘的被調(diào)查同學(xué)中隨機(jī)選取30名學(xué)生,其閱讀時(shí)間(分鐘)整理成如圖所示的莖葉圖,并繪制日均閱讀時(shí)間分布表;
其中30名同學(xué)的日均閱讀時(shí)間分布表(單位:分鐘)
閱讀時(shí)間 | |||
男生人數(shù) | 4 | 2 | |
女生人數(shù) | 10 | 2 |
求出,的值,并根據(jù)日均時(shí)間分布表,估計(jì)這30名同學(xué)日閱讀時(shí)間的平均值;
(Ⅲ)從(Ⅱ)中日均閱讀時(shí)間高于90分鐘的同學(xué)中隨機(jī)選取2人介紹閱讀體會(huì),求這2人性別相同的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程是(t為參數(shù)),以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,圓C的極坐標(biāo)方程為.
(1)求直線l的普通方程和圓C的直角坐標(biāo)方程;
(2)由直線l上的點(diǎn)向圓C引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,四邊形ABCD為平行四邊形,BD⊥DC,△PCD為正三角形,平面PCD⊥平面ABCD,E為PC的中點(diǎn).
(1)證明:AP∥平面EBD;
(2)證明:BE⊥PC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與拋物線有共同的焦點(diǎn),且離心率為,設(shè)分別是為橢圓的上下頂點(diǎn)
(1)求橢圓的方程;
(2)過點(diǎn)與軸不垂直的直線與橢圓交于不同的兩點(diǎn),當(dāng)弦的中點(diǎn)落在四邊形內(nèi)(含邊界)時(shí),求直線的斜率的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com