17.已知函數(shù)f(x)定義域?yàn)镽,命題:p:f(x)為奇函數(shù),q:${∫}_{-1}^{1}$f(x)dx=0,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 根據(jù)充分必要條件的定義以及函數(shù)的奇偶性判斷即可.

解答 解:由f(x)為奇函數(shù),得${∫}_{-1}^{1}$f(x)dx=0,是充分條件,
反之不成立,不是必要條件,
故選:A.

點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性,考查充分必要條件,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{3}$x3-x2-3x+1.
(1)求y=f(x)在x=1處的切線方程;
(2)求y=f(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.集合M={(x,y)|y=$\sqrt{4-{x}^{2}}$},N={(x,y)|x-y+m=0},若M∩N的子集恰有4個(gè),則m的取值范圍是( 。
A.(-2$\sqrt{2}$,2$\sqrt{2}$)B.[-2,2$\sqrt{2}$)C.(-2$\sqrt{2}$,-2]D.[2,2$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.過點(diǎn)P(-2,3)且在兩坐標(biāo)軸上的截距相等的直線l的方程為x+y-1=0或3x+2y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,我市某居民小區(qū)擬在邊長(zhǎng)為1百米的正方形地塊ABCD上劃出一個(gè)三角形地塊APQ種植草坪,兩個(gè)三角形地塊PAB與QAD種植花卉,一個(gè)三角形地塊CPQ設(shè)計(jì)成水景噴泉,四周鋪設(shè)小路供居民平時(shí)休閑散步,點(diǎn)P在邊BC上,點(diǎn)Q在邊CD上,記∠PAB=a.
(1)當(dāng)∠PAQ=$\frac{π}{4}$時(shí),求花卉種植面積S關(guān)于a的函數(shù)表達(dá)式,并求S的最小值;
(2)考慮到小區(qū)道路的整體規(guī)劃,要求PB+DQ=PQ,請(qǐng)?zhí)骄俊螾AQ是否為定值,若是,求出此定值,若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.《孫子算經(jīng)》是我國(guó)古代內(nèi)容極其豐富的數(shù)學(xué)名著,書中有如下問題:“今有圓窖周五丈四尺,深一丈八尺,問受粟幾何?”其意思為:“有圓柱形容器,底面圓周長(zhǎng)五丈四尺,高一丈八尺,求此容器能放多少斛米”(古制1丈=10尺,1斛=1.62立方尺,圓周率π=3),則該圓柱形容器能放米2700斛.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“($\frac{1}{3}$)x<1”是“$\frac{1}{x}$>1”的(  )
A.充分且不必要條件B.必要且不充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某公司生產(chǎn)一種產(chǎn)品,第一年投入資金1 000 萬元,出售產(chǎn)品收入 40 萬元,預(yù)計(jì)以后每年的投入資金是上一年的一半,出售產(chǎn)品所得收入比上一年多 80 萬元,同時(shí),當(dāng)預(yù)計(jì)投入的資金低于 20 萬元時(shí),就按 20 萬元投入,且當(dāng)年出售產(chǎn)品收入與上一年相等.
(Ⅰ)求第n年的預(yù)計(jì)投入資金與出售產(chǎn)品的收入;
(Ⅱ)預(yù)計(jì)從哪一年起該公司開始盈利?(注:盈利是指總收入大于總投入)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2ex-$\frac{1}{2}$ax
(Ⅰ)求f(x)的單調(diào)區(qū)間
(Ⅱ)若x≥0時(shí),f(x)≥(x-a)2-$\frac{1}{2}$ax-3恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案