若f(x)的定義域是[1,4],那么f(x2)的定義域是(  )
A、[1,16]
B、[1,2]
C、[-2,-1]
D、[-2,-1]∪[1,2]
考點(diǎn):函數(shù)的概念及其構(gòu)成要素
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)定義域之間的關(guān)系即可得到結(jié)論.
解答: 解:∵f(x)的定義域是[1,4],
∴由1≤x2≤4,得1≤x≤2或-2≤x≤-1,
即函數(shù)f(x2)的定義域?yàn)閇-2,-1]∪[1,2],
故選:D
點(diǎn)評(píng):本題主要考查函數(shù)的定義域的求解,根據(jù)復(fù)合函數(shù)定義域之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P、Q是兩個(gè)非空集合,定義P*Q={(a,b)|a∈P,b∈Q,a≠b}.若P={0,1,2},Q={1,2,3,4},則P*Q中的元素有( 。
A、4個(gè)B、7個(gè)
C、10個(gè)D、12個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos2α=
1
3
,則sin2(α+
π
2
)等于(  )
A、
5
3
B、
1
3
C、
1
4
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察數(shù)表
x-3-2-1123
f(x)41-1-335
g(x)1423-2-4
則f[g(3)-f(-1)]=( 。
A、3B、4C、-3D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線經(jīng)過(guò)點(diǎn)(2,1),則雙曲線的離心率為(  )
A、
5
2
B、
2
C、
3
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=
(2-i)(1+i)
i
(i為虛數(shù)單位),則|z|等于( 。
A、10
B、
10
C、5
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)結(jié)論:
①方程k=
y-2
x+1
與方程y-2=k(x+1)可表示同一直線;
②直線l過(guò)點(diǎn)P(x1,y1),傾斜角為
π
2
,則其方程為x=x1;
③直線l過(guò)點(diǎn)P(x1,y1),斜率為0,則其方程為y=y1;
④所有直線都有點(diǎn)斜式和斜截式方程,
其中正確的命題序號(hào)為( 。
A、①④B、③④C、②③D、①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“任意x∈[1,2],x2-a≤0”為真命題的一個(gè)必要不充分條件是( 。
A、a≤3B、a≥3
C、a≥4D、a≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α為銳角,且tan(
π
4
+α)=-2,計(jì)算
4sinα-2cosα
5cosα+3sinα
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案