5.為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:噸)對價(jià)格y(單位:千元/噸)和利潤z的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如表:
x12345
y7.06.55.53.82.2
(Ⅰ)求y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(Ⅱ)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少時(shí),年利潤z取到最大值?(保留兩位小數(shù))
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

分析 (Ⅰ)由表中的數(shù)據(jù)分別計(jì)算,即可寫出線性回歸方程;
(Ⅱ)年利潤z=x(y-2),即可得出結(jié)論.

解答 解:(Ⅰ)$\overline{x}=3$,$\overline{y}=5$,$\sum_{i=1}^5{y_i}=25$,$\sum_{i=1}^5{{x_i}{y_i}}=62.7$,$\sum_{i=1}^5{{x_i}^2}=55$,
解得:$\hat b=-1.23$,$\hat a=8.69$
所以:$\hat y=8.69-1.23x$.
(Ⅱ)年利潤z=x(y-2)=-1.23x2+6.69x
所以x=2.72時(shí),年利潤z最大.

點(diǎn)評 本題考查了求線性回歸方程的應(yīng)用問題,也考查了利用線性回歸方程預(yù)測生產(chǎn)問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.將函數(shù)f(x)=sinωx-cosωx+1(ω>0)的圖象向左平移$\frac{π}{4}$個(gè)單位,再向下平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,若y=g(x)的相鄰兩個(gè)零點(diǎn)之差的絕對值等于$\frac{π}{2}$,則函數(shù)y=g(x)的一個(gè)單調(diào)遞減區(qū)間是( 。
A.[0,$\frac{π}{8}$]B.[$\frac{π}{8}$,π]C.[$\frac{π}{4}$,$\frac{3π}{4}$]D.[$\frac{π}{8}$,$\frac{5π}{8}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間(-∞,0)上單調(diào)遞增,若實(shí)數(shù)a滿足$f({2^{a-1}})>f(-\sqrt{2})$,則a的取值范圍是(1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)$y=tan({\frac{π}{2}-x})$$x∈[{-\frac{π}{4},\frac{π}{4}}]$且x≠0的值域?yàn)椋ā 。?table class="qanwser">A.[-1,1]B.(-∞,-1]∪[1,+∞)C.(-∞,1)D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若$α,β∈({-\frac{π}{2},\frac{π}{2}})$,且tanα,tanβ是方程${x^2}+4\sqrt{3}x+5=0$的兩個(gè)根,則α+β等于( 。
A.$\frac{π}{3}$或$\frac{4π}{3}$B.$\frac{π}{3}$或$-\frac{2π}{3}$C.$\frac{π}{3}$D.$-\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知a、b、c是直線,α是平面,給出下列命題:
①若a∥b,b⊥c,則a⊥c;   
②若a⊥b,b⊥c,則a∥c;
③若a∥α,b?α,則a∥b;  
④若a⊥α,b?α,則a⊥b;
⑤若a與b異面,則至多有一條直線與a、b都垂直.
⑥若a?α,b?α,a⊥c,b⊥c,則a∥b.
其中真命題是①④.(把符合條件的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2c2=2a2+2b2+ab,則△ABC的形狀是鈍角三角形.(填“直角”、“鈍角”或“銳角”等)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)$f(x)=\frac{ax}{{{x^2}+1}}(a>0)$的單調(diào)遞增區(qū)間是( 。
A.(-∞,-1)B.(-1,1)C.(1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)α=300°,則與α終邊相同的角的集合為(  )
A.{α|α=k•360°-30°,k∈Z}B.{α|α=k•360°-60°,k∈Z}
C.{α|α=k•360°+30°,k∈Z}D.{α|α=k•360°+60°,k∈Z}

查看答案和解析>>

同步練習(xí)冊答案