已知A(-5,0),B(5,0),動點P滿足||,|,8成等差數(shù)列.
(1)求P點的軌跡方程;
(2)對于x軸上的點M,若滿足||·||=,則稱點M為點P對應的“比例點”.問:對任意一個確定的點P,它總能對應幾個“比例點”?

(1);(2)見解析.

解析試題分析:(1)利用等差中項的定義可得利用雙曲線定義寫出軌跡方程即可;(2)考慮到上,故可設(shè)出其坐標,設(shè),寫出||、||即,根據(jù)||·||=計算得出關(guān)于的方程,判斷此方程根的個數(shù)確定“比例點”.
試題解析:(1)由已知得
∴P點的軌跡是以A,B為焦點的雙曲線的右支,且,
∴P點的軌跡方程為(標不扣分,不標扣1分)                 5分
(2)設(shè)




                     10分
,∴方程恒有兩個不等實根
∴對任意一個確定的點P,它總能對應2個“比例點”              12分
考點:等差中項、向量數(shù)量積的計算、雙曲線定義.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知、分別是橢圓的左、右焦點,右焦點到上頂點的距離為2,若
(Ⅰ)求此橢圓的方程;
(Ⅱ)直線與橢圓交于兩點,若弦的中點為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知拋物線和⊙,過拋物線上一點作兩條直線與⊙相切于、兩點,分別交拋物線為E、F兩點,圓心點到拋物線準線的距離為

(1)求拋物線的方程;
(2)當的角平分線垂直軸時,求直線的斜率;
(3)若直線軸上的截距為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,F(xiàn)1,F(xiàn)2分別是橢圓C:=1(a>b>0)的左、右焦點,A是橢圓C的頂點,B是直線AF2與橢圓C的另一個交點,∠F1AF2=60°

(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40,求a,b的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖示:已知拋物線的焦點為,過點作直線交拋物線、兩點,經(jīng)過、兩點分別作拋物線的切線,切線相交于點.

(1)當點在第二象限,且到準線距離為時,求;
(2)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系上取兩個定點,再取兩個動點
(I)求直線交點的軌跡的方程;
(II)已知,設(shè)直線:與(I)中的軌跡交于、兩點,直線、 的傾斜角分別為,求證:直線過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知圓和圓.
(1)若直線過點,且被圓截得的弦長為,求直線的方程;
(2)設(shè)為平面上的點,滿足:存在過點的無窮多對互相垂直的直線,它們分別與圓和圓相交,且直線被圓截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點為F2,點F1與F2關(guān)于坐標原點對稱,以F1,F2為焦點的橢圓C過點.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設(shè)點,過點F2作直線與橢圓C交于A,B兩點,且,若的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,橢圓的左頂點為,是橢圓上異于點的任意一點,點與點 關(guān)于點對稱.

(1)若點的坐標為,求的值;
(2)若橢圓上存在點,使得,求的取值范圍.

查看答案和解析>>

同步練習冊答案