已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過點(diǎn)F2并垂直于x軸的直線與橢圓的一個交點(diǎn)為B,且F1B+F2B=10,橢圓上不同的兩點(diǎn)A(x1,y1)、C(x2,y2)滿足條件:F2A、F2B、F2C成等差數(shù)列.
(1)求該橢圓的方程;
(2)求弦AC中點(diǎn)的橫坐標(biāo);
(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.
解:(1)由橢圓的定義及已知得2a=|F1B|+|F2B|=10,a=5, 又c=4,所以b2=a2-c2=9. 故該橢圓的方程為+=1. (2)由題意可得F2(4,0),F(xiàn)2B=,設(shè)點(diǎn)A(x1,y1),C(x2,y2),則F2A=,又點(diǎn)A(x1,y1)在橢圓+=1上,故有+=1,y12=(25-x12),代入F2A=,得F2A==(25-4x1)(或直接利用焦半徑公式),同理,F(xiàn)2C=(25-4x2),因?yàn)镕2A、F2B、F2C成等差數(shù)列,所以F2A+F2C=2F2B. 所以(5x1)+(5x2)=2×,x1+x2=8.故弦AC的中點(diǎn)的橫坐標(biāo)x=4. (3)將x=4代入y=kx+m(k≠0),故點(diǎn)M的坐標(biāo)為(4,4k+m),則kOM==, 又kAC==,由+=1,+=1,兩式相減,得,即·=,·=,k=,所以4k+m=,點(diǎn)M(4,).又點(diǎn)M(4,)在橢圓+=1內(nèi),所以+<1.解得<m<,即m的取值范圍為(,). 解析:本題首先利用橢圓的定義將其方程求出;然后利用已知條件將弦的中點(diǎn)橫坐標(biāo)找出;最后一個問題要注意挖掘隱含條件即相應(yīng)的弦中點(diǎn)一定在橢圓內(nèi). |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
()(本小題滿分12分)已知橢圓C: 的離心率為,過右焦點(diǎn)F的直線l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1是,坐標(biāo)原點(diǎn)O到直線l的距離為.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時,有成立?
若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求橢圓的方程;
(2)設(shè)直線l過F點(diǎn)(l不垂直坐標(biāo)軸),且與橢圓交于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M(m,0),試求m的取值范圍.
(文)某廠家擬在2006年舉行促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x萬件與年促銷費(fèi)用m萬元(m≥0)滿足x=3(k為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件.已知2006年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金,不包括促銷費(fèi)用).
(1)將2006年該產(chǎn)品的利潤y萬元表示為年促銷費(fèi)用m萬元的函數(shù);
(2)該廠家2006年的促銷費(fèi)用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com