16.已知函數(shù)f(x)=$\sqrt{3}$sin xcos x-$\frac{1}{2}$cos2x-$\frac{1}{2}$.
(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的最大值和最小值及相應(yīng)的x的值.

分析 (1)化簡(jiǎn)f(x),根據(jù)T=$\frac{2π}{ω}$=π,求出函數(shù)的最小正周期,解不等式求出函數(shù)的遞增區(qū)間即可;
(2)根據(jù)x的范圍,求出2x-$\frac{π}{6}$的范圍,從而求出函數(shù)的最大值和最小值.

解答 解:(1)因?yàn)閒(x)=$\frac{\sqrt{3}}{2}$sin 2x-$\frac{1}{2}$cos 2x-$\frac{1}{2}$=sin(2x-$\frac{π}{6}$)-$\frac{1}{2}$,
所以T=$\frac{2π}{ω}$=π,
故f(x)的最小正周期為π,
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,
得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z,
故函數(shù)f(x)的單調(diào)遞增區(qū)間為(kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$),k∈Z;
(2)因?yàn)?≤x≤$\frac{π}{2}$,所以-$\frac{π}{6}$≤2x-$\frac{π}{6}$≤$\frac{5π}{6}$,
所以當(dāng)2x-$\frac{π}{6}$=$\frac{π}{2}$,即x=$\frac{π}{3}$時(shí),f(x)有最大值$\frac{1}{2}$;
當(dāng)2x-$\frac{π}{6}$=-$\frac{π}{6}$,即x=0時(shí),f(x)有最小值-1.

點(diǎn)評(píng) 本題考查了三角函數(shù)的周期和單調(diào)性,考查函數(shù)的最值問題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.計(jì)算:
(1)${(2\frac{7}{9})^{0.5}}+{0.1^{-2}}+{(2\frac{10}{27})^{-\frac{2}{3}}}-3{π^0}+\frac{37}{48}$; 
(2)$\root{3}{{a}^{\frac{7}{2}}\sqrt{{a}^{-3}}}$÷$\sqrt{\root{3}{{a}^{-8}}\root{3}{a^{16}}}$÷$\root{3}{\sqrt{{a}^{-3}}\sqrt{{a}^{-1}}}$;
(3)$\frac{lg8+lg125-lg2-lg5}{{lg\sqrt{10}•lg0.1}}$;          
(4)$lg500+lg\frac{8}{5}-\frac{1}{2}lg64+50{(lg2+lg5)^2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.江津?qū)嶒?yàn)中學(xué)女子排球賽將在第七周即將打響,劉貴霞老師帶領(lǐng)的高二(6班)和鄒鸝娜老師帶領(lǐng)的高二(1班)兩支排球隊(duì)打算在第六周進(jìn)行一場(chǎng)熱身賽,比賽采取五局三勝制,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局高二(6班)獲勝的概率是 $\frac{1}{2}$,其余每局比賽高二(6班)獲勝的概率都是 $\frac{2}{3}$.設(shè)各局比賽結(jié)果相互獨(dú)立.則高二(6班)以3:0獲勝的概率為$\frac{8}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{f_1}(x),x∈[0,\frac{1}{2})}\\{{f_2}(x),x∈[\frac{1}{2},1]}\end{array}}$,其中f1(x)=-2(x-$\frac{1}{2}$)2+1;f2(x)=-2x+2,若x0∈[0,$\frac{1}{2}$),x1=f(x0),f(x1)=x0,則x0=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.|x-2|+|x+3|≥4的解集為(  )
A.(-∞,-3]B.$[{-3,-\frac{5}{2}}]$C.$[{-∞,-\frac{5}{2}}]$D.$({-∞,-3})∪({-3,-\frac{5}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)=4${\;}^{(co{s^2}x)}}$+4${\;}^{(si{n^2}x)}}$,則f(x)的最小值等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.解下列不等式:
(1)2<|2x-5|≤7;        
(2)$\frac{1}{x-1}$>x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量$\overrightarrow a$=(1,m),$\overrightarrow b$=(m,2),若$\overrightarrow a$⊥$\overrightarrow b$,則m=0;若$\overrightarrow a$∥$\overrightarrow b$,則m=$±\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)y=Asin(ωx+φ),(A>0,|φ|<π,ω>0)的一段圖象如圖所示.
(1)求函數(shù)的解析式;
(2)求這個(gè)函數(shù)的周期和遞增區(qū)間;
(3)說明該函數(shù)的圖象可由y=sinx的圖象經(jīng)過怎樣的變換而得到.

查看答案和解析>>

同步練習(xí)冊(cè)答案