一個幾何體的三視圖如圖所示,則此幾何體的體積是
 

考點:由三視圖求面積、體積
專題:計算題,空間位置關系與距離
分析:三視圖中長對正,高對齊,寬相等;由三視圖想象出直觀圖,一般需從俯視圖構建直觀圖,該幾何體為三棱錐.
解答: 解:由三視圖可知,該幾何體為三棱錐,
其底面面積為S=
1
2
×4×4=8,
高為3,
則其體積為V=
1
3
×3×8=8.
故答案為:8.
點評:三視圖中長對正,高對齊,寬相等;由三視圖想象出直觀圖,一般需從俯視圖構建直觀圖,本題考查了學生的空間想象力,識圖能力及計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列結論:
①若命題p:?x0∈R,tanx0=1;命題q:?x∈R,x2-x+1>0,則命題“p且¬q”是假命題;
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是
a
b
=-3;
③命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1則x2-3x+2≠0.”
④命題“若xy=0,則x=0或y=0”的否命題為“若xy≠0則x≠0或y≠0”
⑤命題“?x∈R,2x>0”的否定是“?x0∈R,2 x0≤0”
其中正確結論的序號是
 
.(把你認為正確結論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式a≤x2-4x對任意x∈[0,4]恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若0≤x≤2,則f(x)=
x(8-3x)
的最大值( 。
A、
5
B、2
C、
16
3
D、
4
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正三棱柱ABC-A1B1C1中,各棱長均為2,M為AA1中點,N為BC的中點,則在棱柱的表面上從點M到點N的最短距離是( 。
A、
10
B、
11
C、
4+
3
D、
4+
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α為第二象限角,sinα+cosα=
3
3
,則cos2α=( 。
A、
5
3
B、
5
9
C、-
5
3
D、-
5
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=2,an=
an-1
2an-1+1
(n≥2).
(1)求a2、a3、a4的值;
(2)猜測an的表達式,并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=2sin(2x+
π
2
)是( 。
A、周期為π的偶函數(shù)
B、周期為π的奇函數(shù)
C、周期為2π的偶函數(shù)
D、周期為2π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求不等式a2x-1>ax+2(a>0,且a≠1)中x的取值范圍.

查看答案和解析>>

同步練習冊答案