已知a,b∈R,a≠b,且a+b=2,則( 。
A、ab≤
a2+b2
2
≤1
B、1<ab<
a2+b2
2
C、ab≤1≤
a2+b2
2
D、ab<1<
a2+b2
2
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:a,b∈R,a≠b,且a+b=2,可得2>2
ab
,2(a2+b2)>(a+b)2,化簡即可得出.
解答: 解:∵a,b∈R,a≠b,且a+b=2,
2>2
ab
,2(a2+b2)>(a+b)2
化為ab<1,a2+b2>2,
ab<1<
a2+b2
2

故選:D.
點評:本題考查了基本不等式的性質(zhì),使用時注意“一正二定三相等”的法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+bx的圖象在點A(1,f(1))處的切線的斜率為4,則函數(shù)g(x)=
3
sin2x+bcos2x的最大值是( 。
A、1
B、2
C、
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+ϕ)+k在一個周期內(nèi)的圖象如圖,函數(shù)f(x)解析式為( 。
A、f(x)=4sin(
1
2
x+
π
12
)-1
B、f(x)=2sin(2x-
π
12
)+1
C、f(x)=4sin(
1
2
x+
π
6
D、f(x)=2sin(2x-
π
6
)+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知關(guān)于x的方程(m+3)x2-4mx+2m-1=0 的兩根異號,且負根的絕對值比正根大,那么實數(shù)m的取值范圍是( 。
A、-3<m<0
B、0<m<3
C、m<-3或m>0
D、m<0 或 m>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若滿足條件
x-y+2≥0
x+y-2≥0
kx-y-2k+1≥0
的點P(x,y)構(gòu)成三角形區(qū)域,則實數(shù)k取值范圍是( 。
A、(-∞,-1)
B、(1,+∞)
C、(0,1)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線過點P(0,2),且在x軸上的截距是2,則直線的傾斜角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,n≥2,公差d<0,前n項和是Sn,則有(  )
A、nan<Sn<na1
B、na1<Sn<nan
C、Sn≥na1
D、Sn≤nan

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,對所有n∈N*,都有a1a2…an=n2,則a3=(  )
A、
3
2
B、3
C、9
D、
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.
(2)如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線AD交⊙O于點D,DE⊥AC,交AC的延長線于點E.OE交AD于點F.
①求證:DE是⊙O的切線;②若
AC
AB
=
3
5
,求
AF
DF
的值.
(3)在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
),以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案