17.在△ABC中,命題p:“B≠60°“,命題q:“△ABC的三個內(nèi)角A,B,C不成等差數(shù)列“,那么p是q的
( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 由B≠60°,則(A+C)-2B=π-B-2B≠0,?△ABC的三個內(nèi)角A,B,C不成等差數(shù)列.

解答 解:命題p:“B≠60°“則(A+C)-2B=π-B-2B≠0,?命題q:“△ABC的三個內(nèi)角A,B,C不成等差數(shù)列“,
故選:C.

點評 本題考查了三角形內(nèi)角和定理、等差數(shù)列、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.明朝數(shù)學(xué)家程大位將“孫子定理”(也稱“中國剩余定理”)編成易于上口的《孫子口訣》:三人同行七十稀,五樹梅花廿一支,七子團(tuán)圓正半月,除百零五便得知.已知正整數(shù)n被3除余2,被5除余3,被7除余4,求n的最小值.按此口訣的算法如圖,則輸出n的結(jié)果為( 。
A.53B.54C.158D.263

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)=$\frac{f(b)-f(a)}{b-a}$,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0而是它的一個均值點.
例如y=|x|是[-2,2]上的“平均值函數(shù)”,0就是它的均值點.給出以下命題:
①函數(shù)f(x)=sinx-1是[-π,π]上的“平均值函數(shù)”;
②若y=f(x)是[a,b]上的“平均值函數(shù)”,則它的均值點x0≤$\frac{a+b}{2}$;
③若函數(shù)f(x)=x2+mx-1是[-1,1]上的“平均值函數(shù)”,則實數(shù)m∈(-2,0);
④若f(x)=lnx是區(qū)間[a,b](b>a≥1)上的“平均值函數(shù)”,x0是它的一個均值點,則lnx0<$\frac{1}{{\sqrt{ab}}}$.
其中的真命題有①③④(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知等比數(shù)列{an}中,a3=4,a6=$\frac{1}{2}$,則公比q=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥1}\\{x≤2}\end{array}\right.$,則z=$\frac{y+3}{x}$的最小值為( 。
A.-1B.7C.$\frac{5}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知直線l:$\left\{{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}}$(其中t為參數(shù),α為傾斜角).以坐標(biāo)原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=$\frac{cosθ}{{{{sin}^2}θ}}$.
(1)求C的直角坐標(biāo)方程,并求C的焦點F的直角坐標(biāo);
(2)已知點P(1,0),若直線l與C相交于A,B兩點,且$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$=2,求△FAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若復(fù)數(shù)z=(sinα-$\frac{1}{3}$)+i(cosα-$\frac{2\sqrt{2}}{3}$)是純虛數(shù)(i是虛數(shù)單位),則tanα的值為( 。
A.$\frac{\sqrt{2}}{4}$B.-$\frac{\sqrt{2}}{4}$C.2$\sqrt{2}$D.-2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=2x+1-2x2的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.宋元時期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.圖1是源于其思想的一個程序框圖,若輸入的a,b分別為4,2,則輸出的n等于( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊答案