16.若函數(shù)$f(x)=\frac{2}{3}{x^3}-2{x^2}+ax+10$在區(qū)間[-1,4]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-16]∪[2,+∞)B.(-16,2)C.[2,+∞)D.(-∞,-16]

分析 求函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性和導(dǎo)數(shù)之間的關(guān)系進(jìn)行求解即可.

解答 解:函數(shù)的導(dǎo)數(shù)f′(x)=2x2-4x+a,
∵f(x)在[-1,4]遞減,
∴f′(x)=2x2-4x+a≤0在[-1,4]恒成立,
即a≤-2x2+4x在[-1,4]恒成立,
令g(x)=-2x2+4x,x∈[-1,4],
則g′(x)=-4x+4=-4(x-1),
令g′(x)>0,解得:-1≤x<1,
令g′(x)<0,解得:1<x≤4,
故函數(shù)g(x)在[-1,1)遞增,在(1,4]遞減,
而g(-1)=-6,g(1)=2,g(4)=-16,
故g(x)的最小值是-16,
故a≤-16,
故選:D.

點(diǎn)評 本題主要考查函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若五個(gè)數(shù)1、2、3、4、a的平均數(shù)為4,則這五個(gè)數(shù)的標(biāo)準(zhǔn)差為$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)若數(shù)列{$\frac{n+1}{{a}_{n}}$} 的前n 項(xiàng)和為Tn,求證:1≤Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.對于函數(shù)f(x)=x圖象上的任一點(diǎn)M,在函數(shù)g(x)=lnx上都存在點(diǎn)N(x0,y0),使以線段MN為直徑的圓都經(jīng)過坐標(biāo)原點(diǎn)O,則x0必然在下面哪個(gè)區(qū)間內(nèi)?( 。
A.($\frac{1}{{e}^{3}}$,$\frac{1}{{e}^{2}}$)B.($\frac{1}{{e}^{2}}$,$\frac{1}{e}$)C.($\frac{1}{e}$,$\frac{1}{2}$)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知正三棱錐P-ABC,點(diǎn)P,A,B,C都在表面積為12π的球的球面上,若PA,PB,PC兩兩相互垂直,則球心到截面ABC的距離為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知△ABC的三內(nèi)角A,B,C,所對三邊分別為a,b,c,sin(A-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,若△ABC的面積S=24,b=10,則a的值是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知命題p:方程x2+2mx+1=0有兩個(gè)不相等的根,命題q:方程x2+2(m-2)x-3m+10=0無實(shí)根,若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線L:y=x+m與拋物線y2=8x交于A、B兩點(diǎn)(異于原點(diǎn)),
(1)若直線L過拋物線焦點(diǎn),求線段|AB|的長度;
(2)若OA⊥OB,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)已知雙曲線的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,焦距為6,離心率為3,求雙曲線的標(biāo)準(zhǔn)方程;
(2)已知拋物線的頂點(diǎn)在原點(diǎn),對稱軸是x軸,且焦點(diǎn)到準(zhǔn)線的距離為1,求拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊答案