已知橢圓的離心率為,且過點(diǎn)(),
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時(shí)直線的方程.
(1)(2)面積取最大值1,=
【解析】
試題分析:(Ⅰ)∵
故所求橢圓為:又橢圓過點(diǎn)() ∴ ∴ ∴
(Ⅱ)設(shè)的中點(diǎn)為
將直線與聯(lián)立得,
①
又=
又(-1,0)不在橢圓上,依題意有整理得 ②…
由①②可得,∵, 設(shè)O到直線的距離為,則
=
=…分)
當(dāng)的面積取最大值1,此時(shí)= ∴直線方程為=
考點(diǎn):橢圓的方程性質(zhì)及直線與橢圓的位置關(guān)系
點(diǎn)評(píng):直線與橢圓相交時(shí)常聯(lián)立方程,利用韋達(dá)定理設(shè)而不求的方程轉(zhuǎn)化求解出弦長(zhǎng),本題求解三角型面積最值轉(zhuǎn)化成二次函數(shù),有時(shí)利用均值不等式求最值,此題中第二小題屬于難題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、
| ||||
C、
| ||||
D、以上均不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
| ||
3 |
OA |
OB |
1 |
2 |
OM |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
1 |
2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com