已知A,B是圓O上兩點(diǎn),ÐAOB=2弧度,AB=2,則劣弧AB長(zhǎng)度是________

 

【答案】

   

【解析】

試題分析:圓的半徑r=,∴劣弧AB長(zhǎng)度是l=Rα=×2=,故答案為

考點(diǎn):本題考查了弧長(zhǎng)公式的運(yùn)用

點(diǎn)評(píng):利用弧長(zhǎng)公式l=Rα求圓中的弧長(zhǎng)時(shí),一定要注意公式中的角α的單位是弧度.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn)O,焦點(diǎn)F在x軸正半軸上,傾斜角為銳角的直線l過(guò)F點(diǎn),設(shè)直線l與拋物線交于A、B兩點(diǎn),與拋物線的準(zhǔn)線交于M點(diǎn),
MF
FB
(λ>0)
(1)若λ=1,求直線l斜率
(2)若點(diǎn)A、B在x軸上的射影分別為A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差數(shù)列求λ的值
(3)設(shè)已知拋物線為C1:y2=x,將其繞頂點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°變成C1′.圓C2:x2+(y-4)2=1的圓心為點(diǎn)N.已知點(diǎn)P是拋物線C1′上一點(diǎn)(異于原點(diǎn)),過(guò)點(diǎn)P作圓C2的兩條切線,交拋物線C′1于T,S,兩點(diǎn),若過(guò)N,P兩點(diǎn)的直線l垂直于TS,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•虹口區(qū)一模)已知圓O:x2+y2=4.
(1)直線l1
3
x+y-2
3
=0
與圓O相交于A、B兩點(diǎn),求|AB|;
(2)如圖,設(shè)M(x1,y1)、P(x2,y2)是圓O上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為M1,點(diǎn)M關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為M2,如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問(wèn)m•n是否為定值?若是求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•肇慶二模)已知點(diǎn)P是圓F1(x+
3
)2+y2=16
上任意一點(diǎn),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對(duì)稱(chēng).線段PF2的中垂線與PF1交于M點(diǎn).
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)軌跡C與x軸的兩個(gè)左右交點(diǎn)分別為A,B,點(diǎn)K是軌跡C上異于A,B的任意一點(diǎn),KH⊥x軸,H為垂足,延長(zhǎng)HK到點(diǎn)Q使得HK=KQ,連接AQ延長(zhǎng)交過(guò)B且垂直于x軸的直線l于點(diǎn)D,N為DB的中點(diǎn).試判斷直線QN與以AB為直徑的圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B是圓O:x2+y2=1上的兩個(gè)點(diǎn),P是AB線段上的動(dòng)點(diǎn),當(dāng)△AOB的面積最大時(shí),則
AO
?
AP
-
AP
2
的最大值是( 。
A、-1
B、0
C、
1
8
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西師大附中,臨川一中高三期末聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知點(diǎn)P(3,4)和圓C:(x2)2+y2=4,A,B是圓C上兩個(gè)動(dòng)點(diǎn),|AB|=,(O為坐標(biāo)原點(diǎn))的取值范圍是( )

A[3,9] B[1,11] C[6,18] D[2,22]

 

查看答案和解析>>

同步練習(xí)冊(cè)答案