【題目】已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)談?wù)摵瘮?shù)的零點(diǎn)個(gè)數(shù)
【答案】(1) 的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是 (2)見解析
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)不等式,求出函數(shù)的單調(diào)區(qū)間;
(2)由(1)知當(dāng)時(shí),,分,,三種情況討論,由函數(shù)的定義域?yàn)?/span>顯然沒有零點(diǎn),當(dāng)轉(zhuǎn)化為函數(shù)的交點(diǎn)問題.
解:(1)∵,
故,
∵
∴時(shí),,故單調(diào)遞減,
時(shí),,故單調(diào)遞增,
所以,時(shí),的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是
(2)由(1)知,
當(dāng)時(shí),在處取最小值,
當(dāng)時(shí),,在其定義域內(nèi)無零點(diǎn)
當(dāng)時(shí),,在其定義域內(nèi)恰有一個(gè)零點(diǎn)
當(dāng)時(shí),最小值,因?yàn)?/span>,且在單調(diào)遞減,故函數(shù)在上有一個(gè)零點(diǎn),
因?yàn)?/span>,,,又在上單調(diào)遞增,故函數(shù)在上有一個(gè)零點(diǎn),故在其定義域內(nèi)有兩個(gè)零點(diǎn);
當(dāng)時(shí),在定義域內(nèi)無零點(diǎn);
當(dāng)時(shí),令,可得,分別畫出與,易得它們的圖象有唯一交點(diǎn),即此時(shí)在其定義域內(nèi)恰有一個(gè)零點(diǎn)
綜上,時(shí),在其定義域內(nèi)無零點(diǎn);或時(shí),在其定義域內(nèi)恰有一個(gè)零點(diǎn);時(shí),在其定義域內(nèi)有兩個(gè)零點(diǎn);
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題中真命題是
A. 同垂直于一直線的兩條直線互相平行
B. 底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱
C. 過空間任一點(diǎn)與兩條異面直線都垂直的直線有且只有一條
D. 過球面上任意兩點(diǎn)的大圓有且只有一個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,,點(diǎn)在棱上,且.
(Ⅰ)求證:;
(Ⅱ)是否存在實(shí)數(shù),使得二面角的余弦值為?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2011年國(guó)際數(shù)學(xué)協(xié)會(huì)正式宣布,將每年的3月14日設(shè)為國(guó)際數(shù)學(xué)節(jié),來源于中國(guó)古代數(shù)學(xué)家祖沖之的圓周率。公元263年,中國(guó)數(shù)學(xué)家劉徽用“割圓術(shù)”計(jì)算圓周率,計(jì)算到圓內(nèi)接3072邊形的面積,得到的圓周率是.公元480年左右,南北朝時(shí)期的數(shù)學(xué)家祖沖之進(jìn)一步得出精確到小數(shù)點(diǎn)后7位的結(jié)果,給出不足近似值3.1415926和過剩近似值3.1415927,還得到兩個(gè)近似分?jǐn)?shù)值,密率和約率。大約在公元530年,印度數(shù)學(xué)大師阿耶波多算出圓周率約為().在這4個(gè)圓周率的近似值中,最接近真實(shí)值的是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列A: , ,… ().如果對(duì)小于()的每個(gè)正整數(shù)都有 < ,則稱是數(shù)列A的一個(gè)“G時(shí)刻”.記“是數(shù)列A的所有“G時(shí)刻”組成的集合.
(1)對(duì)數(shù)列A:-2,2,-1,1,3,寫出的所有元素;
(2)證明:若數(shù)列A中存在使得>,則 ;
(3)證明:若數(shù)列A滿足- ≤1(n=2,3, …,N),則的元素個(gè)數(shù)不小于 -.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某籃球教練對(duì)甲乙兩位運(yùn)動(dòng)員在近五場(chǎng)比賽中的得分情況統(tǒng)計(jì)如下圖所示,根據(jù)圖表給出如下結(jié)論:(1)甲乙兩人得分的平均數(shù)相等且甲的方差比乙的方差。(2)甲乙兩人得分的平均數(shù)相等且甲的方差比乙的方差大;(3)甲的成績(jī)?cè)诓粩嗵岣,而乙的成?jī)無明顯提高;(4)甲的成績(jī)較穩(wěn)定,乙的成續(xù)基本呈上升狀態(tài);結(jié)論正確的是( )
A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)的定義域?yàn)?/span>,且存在實(shí)常數(shù)a,使得對(duì)于定義域內(nèi)任意x,都成立,則稱此函數(shù)具有“性質(zhì)”
(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有a的值的集合;若不具有“性質(zhì)”,請(qǐng)說明理由;
(2)已知函數(shù)具有“性質(zhì)”,且當(dāng)時(shí),,求函數(shù)在區(qū)間上的值域;
(3)已知函數(shù)具有“性質(zhì)”,又具有“性質(zhì)”,且當(dāng)時(shí),,若函數(shù)的圖像與直線有2017個(gè)公共點(diǎn),求實(shí)數(shù)p的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過橢圓上異于其頂點(diǎn)的任意一點(diǎn)Q作圓的兩條切線,切點(diǎn)分別為不在坐標(biāo)軸上),若直線在x軸,y軸上的截距分別為,證明:為定值;
(3)若是橢圓上不同兩點(diǎn),軸,圓E過,且橢圓上任意一點(diǎn)都不在圓E內(nèi),則稱圓E為該橢圓的一個(gè)內(nèi)切圓,試問:橢圓是否存在過焦點(diǎn)F的內(nèi)切圓?若存在,求出圓心E的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織了垃圾分類知識(shí)競(jìng)賽活動(dòng).設(shè)置了四個(gè)箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機(jī)抽取張,按照自己的判斷,將每張卡片放入對(duì)應(yīng)的箱子中.按規(guī)則,每正確投放一張卡片得分,投放錯(cuò)誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機(jī)抽取人,將他們的得分按照,,,,分組,繪成頻率分布直方圖如圖:
(1)分別求出所抽取的人中得分落在組和內(nèi)的人數(shù);
(2)從所抽取的人中得分落在組的選手中隨機(jī)選取名選手,以表示這名選手中得分不超過分的人數(shù),求的分布列和數(shù)學(xué)期望;
(3) 如果某選手將抽到的20張卡片逐一隨機(jī)放入四個(gè)箱子,能否認(rèn)為該選手不會(huì)得到100分?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com